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ABSTRACT

This paper is concerned about speaker veri�ca-
tion (SV) using the sequential probability ratio test
(SPRT). In the SPRT input samples are usually as-
sumed to be i.i.d. samples from a probability density
function because an on-line probability computation
is required. Feature vectors used in speech processing
obviously do not satisfy the assumption and there-
fore the correlation between successive feature vectors
has not been considered in conventional SV using the
SPRT. The correlation can be modeled by the hidden
Markov model (HMM) but unfortunately the HMM
can not be directly applied to the SPRT because of
statistical dependence of input samples. This paper
proposes a method of HMM probability computation
using the mean �eld approximation to resolve this
problem, where the probability of whole input samples
is nominally represented as the product of probability
of each sample as if input samples were independent
each other.

1 INTRODUCTION

This paper proposes an improved method of
speaker veri�cation (SV) using the statistical sequen-
tial decision called "sequential probability ratio test
(SPRT)"[1]. In the SPRT a desired performance level
(error rate) can be �xed and the number of samples
needed for the decision is allowed to vary since fur-
ther samples are required until the desired level of
con�dence is achieved. SV using the SPRT has at
least three advantages that other SV methods do not
have[2],[3]: (1) in principle veri�cation error rate can
be controlled, (2) the number of input samples for
a given level of performance is less than any other
method and (3) speaker-dependent adaptive process-
ing is naturally realized.

In the SPRT making the decision procedure
tractable, input samples are usually assumed to be
i.i.d. (independent and identically distributed) sam-

ples from a probability density function (pdf), even
though they are dependent. Feature vectors extracted
every around 10 msec from speech wave are used as in-
put samples for SV. Obviously there is a large amount
of correlation between successive feature vectors but
so far they are treated as independent each other in
SV using the SPRT. This paper proposes a method
which can consider the correlation in the SPRT-based
SV.

The correlation between successive feature vectors,
i.e., the context-dependence of input samples can be
modeled by the well-known hidden Markov model
(HMM). However the HMM can not be directly ap-
plied to the SPRT because of statistical dependence
of input samples. This problem can be resolved ap-
proximately applying the mean �eld approximation[4]
for hidden states to calculate the probability of HMM,
by which the probability of whole input samples is
nominally represented as the product of probability of
each sample as if input samples were independent each
other.

2 SPEAKER VERIFICATION US-

ING SPRT

Let yi; i = 1; 2; � � � (i is frame number) represent a
sequence of feature vectors obtained from input speech
and let ps(yi) and po(yi) be pdfs for a claimed speaker
(true speaker) and all other speakers (impostors), re-
spectively. Given yi; i = 1; 2; � � � ; t and assuming that
yis are mutually independent, the likelihood ratio is
given as

lm(y1; � � � ;yt) =
tY

i=1

ps(yi)

po(yi)
: (1)

Using this likelihood ratio, the decision is made as

lm(y1; � � � ;yt) > A accept as true speaker, (2)

lm(y1; � � � ;yt) < B reject as impostor, (3)



where A and B are thresholds with A > B. If the
value of the likelihood ratio falls between A and B, we
take another feature vector and repeat the decision for
t + 1. It is known that the thresholds A and B have
the following relation with false rejection rate "1 and
false acceptance rate "2 [1].

A �
1� "1

"2
(4)

B �
"1

1� "2
(5)

3 MEAN FIELD APPROXIMATION

IN HMM

3.1 Probability Computation in the stan-

dard HMM

In the standard HMM, probability of a sequence of
observation vectors yi; i = 1; 2; � � � ; t is given as

p(y1; � � � ;yt)

=
X

x1;���;xt

p(y1; � � � ;ytjx1; � � � ; xt)p(x1; � � � ; xt) (6)

=
X

x1;���;xt

f

tY

i=1

p(yijxi)gp(x1)p(x2jx1) � � � p(xtjxt�1)

(7)

=
X

x1;���;xt

tY

i=1

p(yijxi)p(xijxi�1); (8)

where xi; i = 1; 2; � � � ; t represents a sequence of hid-
den states, p(yijxi) is an observation pdf at state xi
and in (8) p(x1jx0) = p(x1).

3.2 Mean Field Approximation in HMM

Suppose hereafter that xi is not a scalar value but
an indicator vector to represent the hidden state at
i-th frame. Let the number of hidden states be M

and xi take one from the vector set Q = fe1; : : : ; eKg,
where ek; 1 � k � K is the K dimensional unit vec-
tor whose k-th component is 1 and all other compo-
nents are 0. When the hidden state at i-th frame is
k, xi takes ek. Using the mean �eld approximation,
p(y1; � � � ;yt) derived by (8) can be approximated as

p(y1; � � � ;yt) '
X

x1;���;xt

tY

i=1

p(yijxi)p(xijhxi�1i)(9)

=

tY

i=1

X

xi

p(yijxi)p(xijhxi�1i) (10)

=

tY

i=1

p(yijhxi�1i); (11)

where h�i is the mean �eld for �. Given the mean
�elds of xis and then replacing

P
x1;���;xt

Qt
i=1 by

Qt
i=1

P
xi

we obtain (10) from (9). From (11) it is
shown that p(y1; � � � ;yt) can be computed as if yis
were independent each other.

Then we describe how to compute the mean �elds
in practice. Using the mean �eld approximation, a
posteriori probability of a hidden state sequence given
an observation sequence is decomposed as

p(x1; � � � ;xtjy1; � � � ;yt)

=
p(y1; � � � ;ytjx1; � � � ;xt)p(x1; � � � ;xt)

p(y1; � � � ;yt)
(12)

'

Qt
i=1 p(yijxi)p(xijhxi�1i)Qt

i=1

P
xi

p(yijxi)p(xijhxi�1i)
(13)

=

tY

i=1

p(xijyi; hxi�1i); (14)

where

p(xijyi; hxi�1i) =
p(yijxi)p(xijhxi�1i)P
xi

p(yijxi)p(xijhxi�1i)
: (15)

p(xijyi; hxi�1i) is considered as a local a posteriori
probability (LAP) and hereafter we write it as zi(xi)
for short. Then the LAPs for all state indicators form
a vector (LAP vector), zi = (zi(xi = e1); � � � ; zi(xi =
eK))

T .
Given an observation sequence, the mean �eld hxii

can be de�ned as

hxii =
X

x1;���;xt

xip(x1; � � � ;xtjy1; � � � ;yt): (16)

Using the decomposition of a posteriori probability in
(14), (16) is approximately computed as

hxii '
X

x1;���;xt

xi

tY

i=1

zi(xi) (17)

=
X

xi

xizi(xi) (18)

= zi: (19)

Finally it is shown that the LAP vector zi can be used
as the mean �eld hxii.

3.3 Summary of the Proposed Probabil-

ity Computation

We summarize the proposed probability computa-
tion of the HMM which can be applied for the SPRT.

(1) Compute p(y1) using the initial state probability
p(x1), i.e.,

p(y1) =
X

x1

p(y1jx1)p(x1): (20)



Then compute the LAP vector z1, whose components
are derived using (15) with i = 1 and p(x1jhx0i) =
p(x1)

(2) For t � 2 compute p(y1; � � � ;yt) using (10) with
the LAP vector zi�1 for the mean �eld hxi�1i. Let
A be a state transition matrix whose component akl
represents the transition probability from state k to l,
then p(xijzi�1) in (10) is described as

p(xijzi�1) = zTi�1Axi: (21)

Then compute zi using (15) again with zi�1 for hxi�1i.

4 PARAMETER ESTIMATION

In the following experiments an ergodic HMM is
used and a single Gaussian pdf is associated as an
output pdf with each hidden state in the HMM. A
set of Gaussian pdfs for all states is commonly used
for all speakers and only transition probabilities be-
tween states are assumed to be di�erent from speaker
to speaker. In order to compare the performance
of the proposed context-dependent method with that
of a conventional context-independent one using the
SPRT, another experiments are carried out using a
mixture of Gaussian distributions as an pdf of i.i.d.
input samples[5]. This conventional approach using
the Gaussian mixture can be interpreted as that a
hidden state is chosen according to mixing coe�cients
independently from context, i.e., the previous hidden
states. On the other hand, in the proposed approach
the hidden states are modeled by the Markov model
and therefore from the Gaussian mixture's point of
view it can be said that the mixing coe�cients vary
with context.

Parameter estimation of the HMM is carried out by
the Baum algorithm[6], which is identical to the Ex-
pectation and Maximization (EM) method[7]. How-
ever we do not straightly use the Baum algorithm to
estimate the whole parameters in the HMM because
we want to look at performance change over the Gaus-
sian mixture approach. That is, the same Gaussian
pdfs as those in the Gaussian mixture approach are
used in the HMM and then only state transition prob-
abilities are estimated by the Baum algorithm (in fact
by an approximated version of it1 ). In addition the
mixing coe�cients in the Gaussian mixture are also
used as the initial state probabilities in the HMM.

1 We adopt the mean-�eld-based approximation method pro-
posed by Zhang[8] instead of the original Baum algorithm, be-

cause it is reported that the approximation method has an ad-

vantage of computational simplicity and gives comparable per-

formance of parameter estimation to the Baum algorithm.

A mixture of K Gaussian distributions is given as

p(yi) =

KX

k=1

akgk(yi;mk;�k);

KX

k=1

ak = 1 (22)

gk(yi;mk;�k) =
1

(2�)D=2j�kj1=2
�

expf�
1

2
(yi �mk)

T�
�1
k (yi �mk)g;(23)

where yi is a D dimensional feature vector at i-th
frame and ak is the mixing coe�cient of the k-th Gaus-
sian distribution gk(yi;mk;�k) with mean vectormk

and covariance matrix �k. The model parameters,
ak;mk;�k; k = 1; � � � ;K are iteratively estimated by
the EM method. Explicit procedures are found in
[9],[5],[3]. The initial values to start the iterative pro-
cedure are obtained by clustering training samples us-
ing the VQ method[10]. The obtained Gaussian distri-
butions are commonly used for both ps(yi) and po(yi)
in (1), also in the HMM approach as well as in the
Gaussian mixture approach.

Using the derived Gaussian pdfs gk(yi;mk;�k);
k = 1; � � � ;K, the pdf for each speaker ps(yi); s =
1; � � � ; S in the Gaussian mixture approach can be
modeled as

ps(yi) =
KX

k=1

as;kgk(yi;mk;�k);
KX

k=1

as;k = 1;(24)

where as;ks are mixing coe�cients for speaker s. Given
training samples of speaker s, yi; i = 1; � � � ; Ns, as;ks
are iteratively estimated as

a
(p+1)
s;k =

1

Ns

NsX

i=1

�
(p)
s;k(yi); (25)

�
(p)
s;k(yi) =

a
(p)
s;kgk(yi;mk;�k)

PK
k

0

=1 a
(p)

s;k
0 gk0 (yi;mk

0 ;�k
0 )
: (26)

The initial values, a
(0)

s;ks are derived by clustering the
training samples yi; i = 1; � � � ; Ns by

k = argmax
k

0

gk0 (yi;mk
0 ;�k

0 ); (27)

then calculating the normalized sample frequencies as-
signed to each class. Once the mixing coe�cients
for all speakers are obtained, those for impostors of
speaker s, ao;ks are obtained by

ao;k =
1

S � 1

SX

t = 1
t 6= s

at;k: (28)



Table 1 Speaker veri�cation errors(%) by two methods

Proposed (HMM) Gaussian mixture
closed open closed open

lnA; lnB FR FA FR FA FR FA FR FA
2.2 , -2.2 4.9 12.2 25.2 12.8 18.9 32.8 21.1 32.4
4.6 , -4.6 0.6 5.1 18.0 5.1 12.0 27.5 15.7 27.1
6.9 , -6.9 0.2 2.9 15.1 2.6 8.9 25.0 12.1 24.1
11.5 , -11.5 0.0 1.6 10.8 1.7 3.6 21.8 7.8 20.8

5 SPEAKER VERIFICATION EX-

PERIMENTS

Text-independent speaker veri�cation experiments
were carried out. The used telephone speech data-set
consists of isolated uttered Japanese 20 words pro-
duced two repetitions by 100 male speakers in two
sessions spaced three to four months apart[3]. The
speech data was low-pass �ltered at 4.5 kHz and dig-
itized at 10 kHz sampling rate. The digitized speech
was pre-emphasized with a �rst-order adaptive �lter
and subjected to 12th order LPC analysis with 25.6
msec Hamming window and 12.8 msec frame rate. In
fact the Selective LPC analysis was applied to use the
spectral information up to 4 kHz considering that the
speech data is telephone speech. The twelve LPC cep-
stral coe�cients obtained by this analysis were used
as a feature vector for each time frame.

The data-set was divided into two sets and used for
open and closed experiments. In open experiments
training and test set are di�erent and in closed ex-
periments both are the same. In the following experi-
ments the covariance matrix �k of each Gaussian dis-
tribution gk(yi;mk;�k) is assumed to be diagonal. In
SV experiments word utterances of each speaker are
connected and used in an endless way. The number
of tests per speaker is 20 for utterances of the same
speaker and 20 for those of impostors, i.e., totally 2000
for both cases. In each test starting point of input is
randomly selected and impostors are also randomly
selected from 99 speakers excluding the relevant true
speaker.

Experimental results using 16 hidden states in the
HMM and 16 mixtures in the Gaussian mixture are
shown in Table 1. Here lnA and lnB are log threshold
values for the decisions in (2) and (3). lnA = 2:2 and
lnB = �2:2, 4.6 & -4.6, 6.9 & -6.9, and 11.5 & -11.5
are obtained by changing the inequalities (4) and (5)
to equalities and putting "1 = "2 = 10�1; 10�2; 10�3,
and 10�5, respectively. FR and FA represent false re-
jection and false acceptance error, respectively. Table
1 shows that the proposed method gives much bet-
ter performance than the Gaussian mixture approach
except FR in open experiments.
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