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ABSTRACT

This paper presents a novel framework of on-line hierarchical
transformation of hidden Markov models (HMM's) for
speaker adaptation. Our aim is to incrementally transform (or

adapt) all the HMM parameters to a new speaker even though the

part of HMM units are unseen in adaptation data. The
transformation paradigm is formulated according to the
approximate Bayesian estimate, which the prior statistics and
the transformation parameters are incrementally updated for
each consecutive adaptation data. Using this formulation, the
updated prior statistics and the current block of data are
sufficient for on-line transformation. Further, we establish a
hierarchical tree of HMM’s and use it to dynamically control
the transformation sharing for each HMM unit. In the speaker
adaptation experiments, we demonstrate the superiority of
proposed on-line transformation to other method.

1. INTRODUCTION

maximuma posteriori(MAP) adaptation of HMM parameters.

By serving the SI HMM's as prior statistics, the HMM
parameters are adapted accordingly based on the MAP
estimate [4]. In case of limited adaptation data, the
transformation-based adaptation can efficiently transform all
HMM parameters by using cluster-dependent
transformation functions. Conversely, in case of sufficient
adaptation data, the MAP adaptation can effectively merge the
adaptation tokens into the SI HMM parameters. By jointly
performing MAP transformation and adaptation, we can
obtain better performance than separate methods for a wide
range of adaptation data [1]. On the other hand, the
construction of tree structure of HMM'’s in transformation-
based adaptation can dynamically capture the goodness of
transformation parameters and also benefit the adaptation
performance for various amounts of adaptation data [8-9].

As explained above, we are motivated to proposeothine
hierarchical transformatiorof HMM parameters for speaker
adaptation. The proposed method is based oapgheoximate

It is no doubt that speaker adaptation technique is a practical Bayesian(or quasi-Bayes, QB) estimate described by Huo and
approach to improve the speaker-independent (SI) speech Lee [6]. Using QB, the unknown parameters are estimated by
recognition system for an enrolled speaker by using some Maximizing the approximate posterior pdf, which is a product
adaptation data. Generally, the adaptation techniques can be Of likelihood function of current block data and a prior density
employed in three strategies; (1) batch adaptation, (2) self given the updated parameter statistics (or hyperparameters).
adaptation, and (3) on-line adaptation. Batch adaptation is an The hyperparameters are obtained from previous observed
off-line adaptation where the models are adapted by using data. By specifying the prior density as conjugate prior family,
batch data. Self adaptation executes the adaptation on testinge may generate @producible prior/posteriopair and then
data itself at runtime and in an unsupervised manner. It is able formulate a recursive MAP estimate for on-line adaptation. In
to trace the changing variabilities during recognition. However, [6], the QB learning of continuous-density HMM (CDHMM)
owing to the insufficient observations and unreliable parameters was derived for on-line speaker adaptation. Their
transcription, the resulting performance is constrained. algorithm relied on the speaker providing at least one example
Besides, on-line adaptation is a tradeoff strategy between Of €ach vocabulary in adaptation data. Suchhoutmay not
batch adaptation and self adaptation. It is aiming at performing be feasible to the adaptation with increasing vocabulary size
adaptation incrementally only when a block of data is @and limited adaptation data. In this paper, we present a
observed. This block of data is then thrown away after transformation-based on-line adaptation approach, where the
completing the adaptation. Consequently, the merit of on-line ©overall HMM parameters are incrementally transformed. We
adaptation is to continuously update theeesth models build a hierarchical tree of HMM parameters such that each
without waiting long history of batch data. Its flexible ~HMM unit can search its most likely transformation

characteristics have been attracted many studies focusing on Parameters from leaf node to root node. &ach HMM unit,
this issue [3][5-6]. we extract the node containing adaptation tokens and use its

] ) ] parameters for on-line transformation. Experiments
In the literature, there are two categories of adaptation gemonstrate that proposed method performs well for various
algorithms. One is the transformation-based adaptation, where nympers of adaptation data and lengths of adaptation interval.
clusters of HMM’s are individually transformed by using
some transformation parameters [7]. The other is the 2. ON-LINE TRANSFORMATION
In the continuous-density HMM framework, we are given a set
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the mixture gain, mean vector, and precision (or inverse
covariance) matrix, i.e.r, =3}, of the kth mixture

component from théh state. Let the HMM parameterd be
grouped intoC clusters. Our goal is to transform the clusters
of HMM parameters to a new environment through some
transformation functionsG,(0,) n ={n.}, c¢=1---,C. Let

X" ={X;,X,,---,X,} ben iid. and successively observed

adaptation samples/blocks, which are used to estimate the
transformation parameterg . Thea posterioridensity of n

satisfies the followingecursiverelation [10]

P(Xq|m) TP x"™)
[ p(Xa|) Co(n|x"dn

1)

p((x") =

To overcome the computational difficulties in (1), an QB
estimate ofn(™ after observing the current sample,, is
approximated by [6]

X"

n n

Oargmax p(X ,|) ([ ™)., @
n

where g(n |9 ) is the closest tractable prior density for
posterior density p(7|x"* )and ¢ is the updated
hyperparameters after observing previous blogks™ . Using
QB estimate with an initial hyperparametegs® , we can
estimate the transformation parameter¥ by applying X,

in (2). Then, the hyperparametes” are updated and stored

for the estimation of next parametenéz). Accordingly, a
recursive formulation for parameter sequengen,,---,n, is

. . . . . H = [ (D
established. Because QB estimate in (2) is an incomplete data ™M = fc ~ * 2 CicTic

problem, we use the EM algorithm to iteratively improve the
approximate posterior likelihood of current estima;é‘) and

derive the new estimatej™ in an optimal manner [2].
Applying the EM algorithm, we perform the following two
steps.

E-step Calculate the auxiliary function

REA™ 1n™) = E{log p(X 801, 17™) +

. _ (3)
logg@@™ 19" ™) | X,.n"}

where s, ={s\" } is the state sequencé, ={I{" i} the
mixture component sequence, aif¥ ,,s,,l,) is our choice
of complete data.

M-step Find the new estimate

7" =argmaxR(i® |n™). )
n

The iterative EM steps guarantee that the approximate
posterior density never decreases.

3. TRANSFORMATION FORMULATION

Before the derivation of on-line transformation (also referred
as OLT), the definitions of transformation function and prior
density should be addressed. In this study, the HMM
parameters are transformed by

A= Gy (A) ={@ye iy + 1", 087n ®)

where u" is a bias vector and{” is a scaling matrix.

Herein, the HMM unit with indices andk is attributed to the
cth cluster membershif2.. On the other hand, we constraint

the prior density inconjugate familydue to mathematical
attractiveness. The joint prior density of transformation

parametersn” = (u{",0{" )of membershipQ. is defined
as a normal-Wishart density of the form [4]

- oy @ -d)/2
g(ul™,08) = g(n® 198y O |e; )
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hyperparameters of prior density determined from previous
successive data. Under this definition, the posterior density of

complete data (i.e.K [exp{R@A{"™ [n™ )} can be also

where

expressed in a form of normal-Wishart densigyi{" |§. )

with the new hyperparameterg, = (7.,m;,0.,0; diven as
follows:
fo =" + > Cili » (7)
iKm,
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where &, (i,k) = Pre™ =i,1{" = k|Xn,l7§“)) is the posterior
probability of being in stateand mixture componeikt given
that the current parameterg™ generate X, ={x{" Jand

Ci = §:(i.K),
) z£t<i,k)(x§“>—uik)/z Y & (k)
ti,kOQ,

T KO0,
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B, = (12)

The E-step of EM algorithm is therefore completed. In the M-
step, we maximizeg({” |$. )with respect toA" and
derive the new estimate of transformation parameters



ﬁén)=(lfl§n),éc(n)) shown below further check if the hyperparameters of this label
o0 =@MV M a" uy  exist. If exist, we

A" =, (14) )

transform the mean vectqu, by adding the bias terrm
BC(”)_l = (4, -d)™q,. (15) and the covariance matri¥;, by multiplying the scalar term

By iteratively performing E-step and M-step for several times, (@& —d)™u{" as indicated in (14-15). Once the HMM
we finally obtain the transformation parametefs”. Using unit Ay is transformed, we skip to process the next HMM

unit. Finally, this algorithm is ended until all the HMM units

() —rAMy —f M) gn)
] {1y ={Ac”.6:"} . the HMM  parameters are oo S

transformed according to (5). After the transformation, the .
hyperparameters are refreshed by Bottom-up search algorithm for OLT

OO = {7 M g™ WOy =(F R G G).  (16) 1. for each HMM unit Ay,

2. for tree depth from leaf layer to root layer
These hyperparameterg™ are then kept in memory and 3. Extract cluster label oA in that depth
served as the new hypel’parameters for on-line estimation of 4. if its transformation parameterﬁén) exist
. +1) .
next transformation parametev.;;‘" ) when consecutive data 5. Perform on-line transformatio, ., (A )
X, are collected. As shown in above derivation, the merit of 6 go to step 1
proposed method is focused on the generation of reproducible 7' else ifhyperparameters of that lab@l (™™ exist
prior/posterior pair in EM algorithm so that the transformation ' yperp ) e
parameters and the associated hyperparameters can be 8. Perform on-line transformatiad®, . (A )
efficiently and recursively computed for OLT. Generally, this 9. go to step 1
set of formulas can be easily extended in terms of the 1q. end
segmental QB estimate which the state sequegceand 11. end
transformation parameterg are alternately maximized [6]. 12end
4. HIERARCHICAL TRANSFORMATION 5. EXPERIMENTS

In OLT, it is crucial to dynamically control the number of ~ The experiments conducted in this paper are aimed at the
transformation parameters such that the recognition accuracy recognition of Mandarin speech. Mandarin is a syllabic and
can be improved for limited adaptation data as well as tonal language. Without considering the tonal information, the
abundant adaptation data. To achieve this goal, a hierarchical overall number of Mandarin syllable is 408. Generagigch
tree of HMM parameters should be established prior to the Mandarin syllable can be divided into an initial (consonant)
adaptation [8-9]. In this study, we built the tree by clustering Part and a final (vowel) part. When the syllable only has final
HMM parameters (or pdfs) using the K-means algorithm [11]. Part, a null initial exists practically. In this study, we employed
During clustering process, the divergence measure [11] was the context-dependent subsyllable modeling for constructing
served as the distance measure. After building the tree, the the HMM units of Mandarin speech. Cumulatively, there were
node labels of HMM units ireach layer are determined. 93 context-dependent (CD) initials, 38 context-independent
Theoretically, the HMM units connected to the same node (CI) finals and 33 null initials included in the experiments. We
possess similar acoustical behaviors and can be suitably arranged the CD initials, Cl finals and null initials by three,
transformed via the shared transformation parameters. In case four and two HMM states, respectively. Hence, 498 HMM
of missing adaptation data, part of nodes in lower layer may states (279 for CD initials, 152 for CI finals, 66 for null
miss adaptation tokens. As a result, we usually obtain the initials and 1 for background silence) were setup for covering
transformation parameters for most nodes in higher layer and all phonetic units of 408 Mandarin syllables. Herein, two
few nodes in lower layer. To reinforce the OLT precision, the speech corpora were collected and provided by
HMM parameters should be transformed using the parameters Telecommunication  Laboratories, Chunghwa Telecom,
nearest to leave layer. Thus, our aim is to automatically extract Taiwan. The first one consisted of 5045 phonetically-balanced
the transformation parameters for each HMM unit based on a Mandarin words uttered by 51 males and 50 females. It was
bottom_up search strategy. This strategy captures the recorded in an office room. We applled this database to
transformation factors along the hierarchical path generate the SI HMM parameters and estimate the initial
Corresponding teach HMM unit. The a|gorithm of bottom_up hyperparameters for OLT. The speech frame was characterized
search strategy is described and shown below. by a feature vector comprised of 12-order LPC-derived
. ) cepstral coefficients, 12-order delta cepstral coefficients, 1
For each HMM unit A, , we search the transformation  gelta log energy and 1 delta delta log energy. Besides, the
parameters from leaf layer to root layer and perform the second database consisted of four repetitions of 408 isolated
following steps. First, the cluster label df, in a layer is Mandarin syllables spoken by a single female speaker. This
extracted. Then, we check if there exist the transformation database was collected in a soundproof room. We used three

parameters for this label. If exist, we use the associated repetitions for testing and the remaining one for adaptation.

. . Only supervised adaptation was investigated. Our recognition
(n)
parametersng” for OLT, ie. Gy (A ). Otherwise, we task is to recognize 408 Mandarin syllables, which is known



to be a highly confusable vocabulary. Without adaptation, the
baseline result using S| speech models had a top five
recognition rates 73.8%. In the following, we examine
proposed OLT through two sets of experiments.

First, we compare the recognition results of OLT with various
update intervals in Fig. 1. In this case, the total number of
adaptation data is fixed at N=150. The update intervals of 1=5,
10, 15, 30, 50, 75 and 150 are considered in the comparison.
Notably, the case of 1=150 corresponds to perform the batch
adaptation. We can see that the top five recognition rates are
increased from 85.7% of 1=5 to 89.7% of 1=100. This is
because that longer interval of speech data contains larger
knowledge of training tokens and phonetic units. The
goodness of estimated transformation parameters could be
guaranteed. However, long interval of data collection is less
practical due to higher costs of computation and memory.
Therefore, it is a tradeoff between update interval and
recognition result in OLT. On the other hand, we demonstrate
the superiority of proposed OLT over Huo’'s on-line
adaptation (also referred as OLA) [6] which QB estimate was
applied for estimating CDHMM parameters. Herein, the
update interval are set to be I=15. As shown in Fig.2, the
recognition performance of OLT is significantly better than
that of OLA. The improvement is especially obvious for small
N. For examples, the top five recognition rate of OLT at N=30
is 83.2%, which is excellent compared with 75.5% of OLA.
The main reason is that the proposed OLT is capable of
hierarchically transforming overall HMM units even though
most of sounds are unheard in adaptation data. Conversely, the
OLA only adjusts the HMM units appearing in adaptation data.
From these prompting results, we conclude that the proposed
on-line hierarchical transformation is an effective approach to
incremental adaptation in large scale’'s HMM-based speech
recognition.
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6. CONCLUSION

We have extended the framework of QB estimate to
recursively learn the parameters for OLT. Our purpose is to
incrementally adapt the model parameters to fit the newest
variabilities without the need of storing previous adaptation
data. In this study, we emphasized our contribution on the
development of on-line transformation of overall HMM
parameters in large-vocabulary speech recognition system
even though only limited adaptation data are available. We
constructed a tree structure of HMM parameters as the prior
knowledge to dynamically control the transformation tying in
OLT. This method is really adaptive in nature foregh
recognition. In the speaker adaptation evaluation, the
proposed OLT was improved asymptotically for increasing
number of adaptation data. Besides, due to the capability of
transforming all HMM units by using insufficient adaptation
data, our OLT was significantly superior to other on-line
adaptation method for various update intervals and adaptation
data amounts.
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