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Name | Activity | Indirect
ABSTRACT # of calls 949 3271 277

%ofallcalls | 21.1% | 72.7% 6.2%

We have developed a domain independent, automatically trained,

call router which directs customer calls based on their response

to an open-ended “How may | direct your call?” query. Routing Table 1: Semantic Types of Caller Requests

behavior is trained from a corpus of transcribed and hand-routed

calls and then carried out using vector-based information retrieval

techniques. Terms consist of sequences of morphologically re- 2. RELATED WORK

duced content words. Documents representing routing destina-

tions consist of weighted term frequencies derived from calls t€all routing is similar to topic identification (see McDonough et

that destination in the training corpus. al. 1994) and document routing (see 8zie et al. 1995) in iden-
tifying which one ofn topics (destinations) most closely matches

In this paper, we evaluate our approach in the context of a largecaller’s request. Call routing is distinguished from these activi-

financial services call center with thousands of possible cusies by requiring a single destination, but allowing a request to be

tomer activities and dozens of routing destinations. We evaluatefined in an interactive dialogue.

the system’s performance on ambiguous and unambiguous calls

when given either accurate transcriptions or fairly noisy real-timé&he only work on natural language call routing to date that we are

speech recognizer output. We conclude that in a highly compleaware of is that by Gorin et al. (1997). They select salient phrase

call center, our system performs at roughly the same level of afFagments from caller requests, such“amde a long distance”

curacy as human operators. and“the area code for”. These fragments are used to determine
the most likely destination(s) for the request either by computing
1. INTRODUCTION the a posterioriprobability for each call type or by passing the

fragments through a neural network classifier.

Thecall routing task involves directing a user’s call to the appro-

priate destination within a call center or providing some simple 3. CORPUS ANALYSIS

information, such as loan rates. In current systems, the user’'s

goals are typically gleaned via a touch-tone system employing\&le analyzed a set of 4497 transcribed telephone calls involving

rigid hierarchical menu. The primary disadvantages of navigatingustomers interacting with human operators at a large call center
menus for users are the time it takes to listen to all the options arldat provides financial services in hundreds of categories in the
the difficulty of matching their goals to the options; these probgeneral areas of banking, credit cards, loans, insurance and in-
lems are compounded by the necessity of descending a nested\istments; we concentrated on the 23 destinations for which we
erarchy of choices to zero in on a particular activity. Even simpléad at least 10 calls in the corpus.

requests such d$d like my savings account balancefhay re- ] )

quire users to navigate as many as four or five nested menus withe operator provides an open-ended promptufw may | di-

four or five options each. We have developed an alternative fgCt your call?” We classified user responses into three cate-

touch-tone menus that allows users to interact with a call router Bpries. First, callers may explicitly providedestination name

natural spoken English dialogues just as they would with a humagither by itself or embedded in a complete sentence, suthas
operator. I have consumer lending?” Second, callers may describe the

activity they would like to perform. Such requests may be un-
Human operators respond to a caller request either by routing thgbiguous, such @$d like my checking account balance’or
call to an appropriate destination, or by querying the caller foambiguous, such dgar loans please’; which in our call center
further information to determine where to route the call. Our ausan be resolved to eitheonsumer lendingwhich handles new
tomatic call router has these two options as well as a third ogar loans, or tdoan serviceswhich handles existing car loans.
tion of sending the call to a human operator. The rest of thighird, a caller can provide andirect request, in which they de-
paper provides both a description and an evaluation of an aseribe their goal in a roundabout way, often including irrelevant
tomatic call router driven by vector-based information retrievainformation. Table 1 shows the distribution of caller request in our
techniques. After introducing our fundamental routing techniquesorpus. For the vast majority of calls, the request was based on
we focus on the impact of speech recognition on performance. Hestination name or activity. Our strategy was to detect and reject
other papers, we provide details of the speech recognizer (Reidhflirect queries and either re-prompt or route them to a human
et al. 1998) and the disambiguation module (Chu-Carroll and Cagperator for handling.
penter 1998). The main advantages of our system are that 1) it is
domain independent, 2) it is trained fully automatically to bothWVe also analyzed the operator’s responses to caller requests to de-
route and disambiguate requests, and 3) in contrast to touch-toigmine the dialogue actions needed for response generation in our

solutions, it performs at roughly the level of accuracy and effiautomatic call router. We found that in the call routing task, the
ciency of human operators. call operator eithenotifiesthe customer of the routing destina-

tion or asks a disambiguatirguery Table 2 shows the frequency
that each dialogue action should be employed based strictly on
the presence of ambiguity in the caller requests in our corpus. We



Notification NPQuegthers length. Thus we divide each row; in the original matrix by
Zofcals 3608 657 535 its length, (3°, _, ., A7.)'/*. Our second weighting is based
% of all calls 80.2% 146% | 5.2% on the notion that a term that only occurs in a few documents is

more important in discriminating among documents than a term
that occurs in nearly every document. We useitiverse docu-
ment frequency (IDRyeighting scheme (see Sparck Jones 1972),
under which a term is weighted inversely to the number of doc-
further analyzed those calls considered ambiguous within our calments in which it occurs, by means WF(t) = log, n/d(t)
center and noted that 75% of such ambiguous requests involderet is a term,n is the total number of documents in the cor-
an underspecified noun phrase (NP), such as requestirigans  pus, andi(t) is the number of documents containing the term
without specifying whether it is aexistingor newcar loan. The Thus we obtain a weighted matri?, whose elements are given
remaining 25% of the ambiguous requests involve underspecifiéy B, 4 = Ai.q x IDF(£)/(Y, <., Ai)'”.
verb phrases, such as askingransfer fundswithout specifying -
the types of accounts to and from which the transfer will occurTo reduce the dimensionality of our vector representations for
or missing verb phrases, such as askingdfoect depositvithout  terms and documents and cast them into the same vector space,
specifying whether the caller wantsget upor change an existing we applied the singular value decomposition to thex n ma-
direct deposit. trix B of weighted term-document frequencies (see Deerwester et

al. 1990). Specifically, we takB = USV'T, whereU is anm x r

4., TRAINING matrix (wherer is the rank ofB), V' is ann x r matrix, andS is an

r xr diagonal matrixsuchthat 1 > s22 > --- > s, > 0. We
Our training corpus consists of 3753 calls each of which is handhink of each row irJ as anr-dimensional vector that represents
routed to one of 23 destinatiohsOur first step is to create one a term, whereas each row ¥iis anr-dimensional vector repre-
(virtual) document per destination, which contains the text of theenting a document. With appropriate scaling of the axes by the
callers’ contributions to all calls routed to that destination. singular values on the diagonal §f we can compare documents

to documents and terms to terms using their corresponding points
We filter each (virtual) document through the morphological proin this newr-dimensional space (see Deerwester et al. 1990). For
cessor of the Bell Labs’ Text-to-Speech synthesizer (see Sproaistance, to employ the dot product of two vectors as a measure of
ed. 1998) to extract the root form of each word in the corpusheir similarity as is common in information retrieval (see Salton
Next, the root forms of caller utterances are filtered through twe971), we have the matrig™ B whose elements contain the dot
lists, theignore listand thestop list in order to build a better product of document vectors. BecauSds diagonal and’ is
n-gram model. The ignore list consists of noise words, such agthonormal, BTB = VS?*VT = vV S(VS)T. Thus, element
uh andum which sometimes get in the way of propergram ; ;in BT B, representing the dot product between document vec-
extraction, as irfl'd like to speak to someone about a car uh tors; and;, can be computed by taking the dot product between
loan”. With noise word filtering, we can properly extract the bi-the ; andj rows of the matrixi’S. In other words, we can con-
gram“carloan”. The stop list enumerates words that do not dissjder rows in the matri¥’S as vectors representing documents
criminate between destinations, suchtlag be andafternoon  for the purpose of document/document comparison. An element
We modified the standard stop list distributed with the SMARTof the original matrixBi,j’ representing the degree of association
information retrieval system to include domain specific terms angletween theth term and thejth document, can be recovered by

proper names that occurred in the training corpus (see Saltgyltiplying theith term vector by theth scaled document vector,
1971). Note that when a stop word is filtered out of the caller UthamelyB; ; = U ((V'S);)".

terance, a placeholder is inserted to prevent the words preceding !

and following the stop word to form-grams. For instance, after 5. ROUTING

filtering the stop words out dff want to check on an account” )

the utterance becomesisw> <sw> <sw> check<sw> <SW> gy call router consists of two components: tbeting module

account”. Without the placeholders, we would extract the bigramynq thedisambiguatiomodule. The routing module takes a caller
“check,account; just as if the caller had used the temheck-  raquest and determines a set of destinations to which the call can
ing account We extract then-gram terms that occur more fre- rea50nably be routed. If there is exactly one such destination, the
quently than a pre-determined threshold and do not contain agy js routed there and the customer notified; if there are multiple
stop words. Our current system uses unigrams that occurred @dstinations, the disambiguation module is invoked in an attempt
least twice and bigrams and trigrams that occurred at least thregtormulate a query; and if there is no appropriate destination or
times in the corpus. No 4-grams occurred three times. Employing, reasonable disambiguation query cannot be generated, the call

this strategy, we found 420 unigram terms, 275 bigram terms, ang routed to an operator. Figure 1 shows a diagram outlining this
62 trigram terms. process.

Table 2: Call Operator Dialogue Actions

Once the set of relevant terms is dgtermlned, we construet &8N The focus of this paper is on the routing module, which begins
n term-document frequency matrix whose rows represent the \ith term extraction.. Given a transcription of the caller’s ut-

m terms, whose columns represent théestinations, and where tgrance (either from a keyboard interface or from the output of a
an e_ntry_At,d is the frequency with which termoccurs in calls to speech recognizer), the first step is to extract the relevaram
destinationd. terms from the utterance. For instance, term extraction on the re-

uest‘l want to check the balance in my savings accountjuld

Itis often advantageous to weight the raw counts to fine tune tr%sult in one bigram ternfsaving,account’, and two unigrams,
contribution of each term to routing. We begin by normallzmgu%hecku and“balance”

the row vectors representing terms by making them each of uni

1These 3753 calls are a subset of the corpus of 4497 calls used The next step in routing ipseudo-document generationGiven

n
our corpus analysis. We excluded those ambiguous calls that were r{hp extracted terms from a caller request, we can represent the
resolved by the operator. request as amn-dimensional vecto) where each component
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Q: represents the number of times that itie term occurred in
the caller's request. We then create mdimensionalpseudo-  Iscall routed by router? I's call routed by router?
documenvectorD = QU, following standard methodology (see
s . yes no yes no
Deerwester et al. 1990). Note thatis simply the sum of the term

by ther frequency of oocurence nthe request, and o soaled prapy 1, CTASCTO? oneat posbie?overlaps with possie?
erly for document/document comparison. %/ NO yes/ \10 y%/ \10 ye% \‘0
Next, we performscoring. Once the vectoiD for the pseudo- ta b 2 2 3a % h b
document is determined, we compare it with the document vectors Figure 3: Classification of Router Outcome
by computing the cosine betwedn and each scaled document
vectors inV'S. Next, we transform the cosine score for each des-
tination using a sigmoid function specifically fitted for that des+ies of experiments to compute the upperbound and lowerbound
tination to obtain a confidence score that represents the routegkthe router’s performance varying the threshold from 0 to 0.9 at
confidence that the call should be routed to that destination. 0.1 intervals. The lowerbound represents the percentage of calls
that are routed correctly, while the upperbound indicates the per-
The reason for the mapping from cosine scores to confidencentage of calls that have the potential to be routed correctly af-
scores is because the absolute degree of similarity between a te- disambiguation (see section 6. for details on upperbound and
quest and a destination, as given by the cosine value betwelewerbound measures). The results in Figure 2 show 0.2 to be the
their vector representations, does not translate directly into thlreshold that yields optimal performance.
likelihood for correct routing. Instead, some destinations may
require a higher cosine value, i.e., a closer degree of similaritur system employs the same vector-based representations of
than others in order for a request to be correctly associated witarms and documents in order to generate clarification questions
those destinations. Thus we collected, for each destination, a $etorder todisambiguatevague or ambiguous user queries. This
of cosine value/routing value pairs over all calls in the trainingorocess is described and evaluated in (Chu-Carroll and Carpenter
data, where the routing value is 1 if the call should be routed t$998).
that destination and 0 otherwise. Then for each destination, we
used the least squared error method in fitting a sigmoid function, 6. EVALUATION
1/(1 4+ e~ (@=*+Y) 1o the set of cosine/routing pairs.
We performed an evaluation of the routing module of our call
We tested the routing performance using cosine vs. confidenceuter on a fresh set of 389 calls disjoint from the training cor-
values on 307 unseen unambiguous requests. In each case,pus. Of the 389 requests, 307 were unambiguous and routed to
selected the destination with the highest cosine/confidence scaheir correct destinations, and 82 were ambiguous and annotated
to be the target destination. Using strict cosine scores, 92.2% with a list of candidate destinations. Unfortunately, in this test
the calls are routed to the correct destination. On the other hargkt, only the caller’s first utterance was transcribed. Thus we have
using sigmoid confidence fitting, 93.5% of the calls are correctiyo information about where the ambiguous calls should be routed
routed. This yields a relative reduction in error rate of 16.7%. after disambiguation.

The fourth step in the routing process involdeidingwhat to  The routing decision made for each call is classified into one of
do with the scoring results. The outcome of the routing mod8 groups, as shown in Figure 3. For instance, grbagontains
ule is a set of destinations whose confidence scores are abovéhase calls which are actually unambiguous, are considered un-
pre-determined threshold. These candidate destinations represamtbiguous by the router, and are routed to the correct destination.
those to which the caller’'s request can reasonably be routed. @n the other hand, grougb contains those calls which are actu-
there is only one such destination, then the call is routed and tladly ambiguous, are considered by the router to be unambiguous,
caller notified; if there are two or more possible destinations, thand are routed to a destination which is not one of the potential
disambiguation module is invoked in an attempt to formulate destinations.
query; otherwise, the the call is routed to an operator.

We evaluated the router’s performance on three subsets of our test

To determine the optimal value for the threshold, we ran a salata: unambiguous requests alone, ambiguous requests alone, and



Unambiguous | Ambiguous All Unambiguous | Ambiguous All
Requests Requests Requests Requests Requests | Requests
LB Ta/(1+2) 4a/(3+4) (Tat+4a)/all LB 77.9% 47.6% 71.5%
UB | (1at+2a)/(1+2) | (3a+4a)/(3+4)| (1at+2a+3at+da)/all UB 90.6% 86.6% 89.7%

Table 3: Calculation of Upperbounds and Lowerbounds Table 5: ASR Results, no rejection, threshold = 0.2

Uns;ntﬂgg?sus AFrenebi%:g‘tJ: ReAl'J'ests may be added to an otherwise unambiguous set of terms, causing
B 88 1% Sg 5% 73 5% uncertainty in routing. We tested this hypothesis by comparing
UB 96.7% 98.8% 97205 the number of calls that are considered ambiguous by the router

when using transcription versus ASR results as input. On our test
o o set, we found that the number of calls classified as ambiguous
Table 4: Transcription Results, no rejection, threshold = 0.2 rises from 26.7% on transcriptions to 27.8% on ASR output.

. In Table 5, we provide an evaluation on ASR output in the same
all requests combined. For each set of data, we calculated a lowgsimat as the transcription results in Table 4, using the same

bound performance, which measures the percentage of calls thgfeshold of 0.2 and no rejection. We show, in (Chu-Carroll and
are correctly routed, and an upperbound performance, which me8arpenter 1998), that the effect of rejecting 10% of the calls to
sures the percentage of calls that are either correctly routed 9ri;man operator significantly increases performance on tran-

have the potential to be correctly routed. Table 3 shows how thgine calls; similar effects hold for queries processed by speech
upperbounds and lowerbounds are computed based on the clagsiognition.

fication in Figure 3 for each of the three data sets. For instance,
for unambiguous requests (classes 1 and 2), the lowerbound is
the number of calls actually routed to the correct destination (1a)
divided by the number of total unambiguous requests, while thg

7. CONCLUSION

ur primary conclusion is that it is time to replace touch-tone

upperbound is the number of calls actually routed to the corregt | systems with spoken language understanding systems.

destination (1a) plus the number of calls which the router finds to

be ambiguous between the correct destination and some other dggs gescribed and evaluated a domain independent, automatically
tination(s) (2a), divided by the number of unambiguous queriegained call router that is able to route calls and engage in dis-
The calls in category 2a are considered to be potentially corregipigyation dialogues. We have demonstrated that the system is
because it is likely that the call will be routed to the correct destizopyst in the face of noise introduced by ASR: with no rejection,
nation after disambiguation. the lowerbound on performance drops from 75.6% to 71.5%, and

. ; ! 0
Table 4 shows the upperbound and lowerbound performance %)E#EPHWUM (after disambiguation) drops from to 97.2% to

each of the three test sets on the transcribed text of the callers
utterances. These results show that the system’s overall perfor-
mance in the case of perfect recognition will fall somewhere be-
tween 75.6% and 97.2%. The actual performance of the syste . .
is determined by two factors: 1) the performance of the disam(ghu'ca;rOIIBJ' agd B” Cartpenti;.cilL_?g%Llil)ll\la(lso%uezrggnzzigzement in
biguation module, which determines the correct routing rate of the vector-based ca ro‘% Ing. 8 _ ’

16.6% of the unambiguous calls that were considered ambiguob§€rwester, S., S. Dumais, G. Furnas, T. Landauer, and R. Harsh-
by the router (class 2a), and 2) the percentage of calls that were Man. 1990. Indexing by latent semantic analyaurnal of
routed correctly out of the 40.4% ambiguous calls that were con-  the American Society for Information Sciendé:391-407.
sidered unambiguous and routed by the router (class 3a). Nd&rin, A., G. Riccardi, and J. Wright. 1997. How may | help
that the performance figures in Table 4 are the result of 100% au- you? Speech Communicatip23:113-127.

tomatic routing, since no request in our test set failed to evok@lcDonough, J., K. Ng, P. Jeanrenaud, H. Gish, and J. R.
at least one candidate destination. In (Chu-Carroll and Carpenter Rohlicek. 1994. Approaches to topic identification on the
1998), we evaluate the performance of the disambiguation mod-  switchboard corpus. ICASSP ‘94385-388.

ule, Whlch_determlnes the pverall system performance, and Sh%ichl, W., B. Carpenter, J. Chu-Carroll, W. Chou. 1998. Lan-
how a||0WII’,]g calls to be rejected and punted to operators affects guage modeling for content extraction in human-computer
the system’s performance. dialogues. INCSLP ‘98 Sydney.

We also evaluated our system on the output of a large vocabg@!lon: G. 1971The SMART Retrieval SysteRrentice Hall.
lary, speaker independent, continuous speech recognition systepgfttze, H., D. Hull, and J. Pedersen. 1995. A comparison
The recognizer is described in detail in (Reichl et al. 1998). Here  of classifiers and document representations for the routing
we simply repeat the precision and recall scores for content term  problem. InSIGIR ‘95

extraction, because these are the only terms whose correct rec8garck Jones, K. 1972, A statistical interpretation of term speci-
nition affects routing performance. Our unigram precision/ recall  ficity and its application in retrievallournal of Documenta-
was 94.1%/87.9%, our bigram precision/recall was 96.9%/85.4% tion, 28:11-20.

and our trigram precision/recall was 98.5%/84.3%. Thus our re&proat, R., editor. 1998Multilingual Text-to-Speech Synthesis:
ognizer completely misses around 12% of all relevant content  The Bell Labs ApproactKluwer.

terms, but is quite reliable when it hypothesizes a content term,

especially a bigram or trigram.
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One potential effect of missing-gram terms is that the call router
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Furthermore, a possible effect of extiagram terms is that they



