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ABSTRACT

A new method is proposed for automatically acquir-
ing Fragments to understand fluent speech. The goal of
this method is to generate a collection of Fragments,
each representing a set of syntactically and semanti-
cally similar phrases. First, phrases frequently ob-
served in the training set are selected as candidates.
Each candidate phrase has three associated probabil-
ity distributions of : following contexts, preceding con-
texts, and associated semantic actions. The similarity
between candidate phrases is measured by applying the
Kullback-Leibler distance to these three probability
distributions. Candidate phrases that are close in all
three distances are clustered into a Fragment. Salient
sequences of these Fragments are then automatically
acquired, and exploited by a spoken language under-
standing module to classify calls in AT&T’s “How May
I Help You?” task. The experimental results show that
the average and maximum improvements in call-type
classification performance of 2.2% and 2.8% are respec-
tively achieved by introducing the Fragments.

1 Introduction

We are interested in providing an automated call-
routing service via natural spoken dialog systems in a
telecommunications environment [1] [2] [3]. In the task
of call-routing, services that a user can access are cat-
egorized into 14 types and other as a complement [1].
By accepting spontaneous speech as input, the spoken
dialog system determines which call-type is required by
a caller. Once the call-type is determined, the infor-
mation needed for completing each service is requested
using another dialog.

It is notable that the dialog system can classify the
call-type adequately if the system can extract phrases
strongly associated with particular call-types. For in-
stance, the word sequence “my credit card” in the
user’s utterance is strongly associated with the call-
type CALLING_CARD. The algorithm for call-type
classification is designed to capitalize on the salient as-
sociation between the phrases in the user’s utterance

and call-types [1].

This paper describes a new stochastic language
model used in the speech understanding process for de-
termining the call-type. Conventional word clustering
approaches for generating a stochastic language model
focus on subsequent contexts only to minimize the
branching factor or the test set perplexity. Since anal-
ogous phrases have a similar distribution in not only
the following word sequence but also in the preceding
word sequence, the similarity of word sequences can
be clustered more effectively by referring to both the
following and preceding word sequences. Furthermore,
an utterance accepted as input of the call-routing di-
alog system can usually be classified semantically into
one of 14 call-types. Some phrases performing an anal-
ogous role in this task must have a similar association
with the call-type. Thus word sequence similarity can
also be computed by using such associations between
phrases and call-types [3].

2 Fragment Distance

2.1 Syntactic and Semantic

Associations of a Fragment

In this paper an arbitrary word sequence in the train-
ing transcriptions is called a phrase. Phrases having a
higher frequency than a specified threshold are selected
as candidates. Each Fragmentis acquired via clustering
of candidate phrases based on their similarity. Frag-
ment grammar is generated by the Fragments and can
be represented by a conventional finite-state machine
for speech understanding. A syntactic association sig-
nifies the relationship between a Fragment and phrases
following or preceding the Fragment. A semantic asso-
ctation focuses on the association between a Fragment
in spoken language and the call-type corresponding to
the speech. An example of the syntactic and semantic
associations of a Fragment is shown in Figure 1 where
f denotes a Fragment, s and ¢ define a preceding or
following phrase and call-type, respectively. In Figure
1, f comprises only one phrase, “calling card”. Given
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Figure 1: Syntactic and Semantic Associations of a
Fragment.

a phrase, Fragment, call-type or combination thereof,
function C'( ) counts the frequency in the training tran-
scriptions. The phrase “on my”, for instance, precedes
this Fragment 181 times. EOS used in the following
phrases denotes End-Of-Sentence. In semantic associ-
ation, the CALLING_CARD call-type, for instance, is
associated with this Fragment 886 times.

In order to generate syntactic probability distribu-
tions, a set of phrases that precedes or follows Frag-
ments is generated. In the following discussion, a
phrase that precedes or follows a Fragment is called
its context. Three probability distributions for each
Fragment are obtained by using the preceding and fol-
lowing contezt frequencies, and the call-type frequency.
The bigram probability distributions focusing on the
following and preceding contezts are denoted in Equa-
tions (1) and (2), respectively.
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where s; denotes the i-th context, f; is the j-th Frag-
ment in the Fragment grammar, w; denotes the k-th
word in contezt s;, and N, is the number of items re-
ferred to as the context. The probability distribution
focusing on semantic associations is obtained from the
call-type frequencies. Equation (3) shows the proba-
bility distribution based on call-type frequencies where
¢; denotes one of the call-types and C(¢; f; ) is the fre-
quency of call-type ¢; associated with phrase f;.
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2.2 Kullback-Leibler Distance

C(fi)

The Kullback-Leibler distance is one of the most
popular expressions of distance for measuring the sim-
ilarity between two probability distributions. Back-off
smoothing is applied in advance to each probability
distribution by using a unigram probability distribu-
tion of the contert and the call-type. Equation (4)

shows the definition of the Kullback-Leibler distance
between Fragments f; and f, exploiting the following
context probability distributions.
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where S comprises all context phrases of length IV,
together with their frequencies. Term s; is one of the
contexts stored in S, and p(sTH| fF) and p(siH|fL) are
the smoothed probability distributions for Fragments
f1 and fo, respectively. Distances based on the preced-
ing context and the call-type probability distributions
are measured in the same manner. In general, the
Kullback-Leibler distance is an asymmetric measure.
We therefore symmetrize the Kullback-Leibler measure
by defining each type of distance as the average of two
distances measured from both Fragments. Thus, the
Fragment distance shown in Equation (5) based on the
following context is used in Fragment clustering. The
symmetrized distances based on the preceding context
and the call-type are defined in the same manner.

Dulfs f) = ds(f1 fa) ‘; ds(fa f1) (5)

3 Grammar Fragment Clustering

In Fragment clustering, all phrases are first gener-
ated as candidates from the training transcriptions.
Then each candidate phrase forms a Fragment as the
initial set of a Fragment. The frequency of each Frag-
ment is obtained by summing candidate phrase fre-
quencies. Fragment f, having the highest frequency
and comprising one phrase is selected as the refer-
ence Fragment. All Fragments are sorted in the order
of Fragment distances measured from f;. The Frag-
ment distance lists are sorted independently based on
preceding contexts, following contexts, and call-types.
Thus three Fragment lists in order of distance are ob-
tained as the result of the sorting. In each Fragment
list, the Fragment subset for clustering is determined
based on the maximum difference in distance between
successive Fragments in that list. For instance, in the
Fragment list based on the distance of following con-
texts, the number of candidate Fragments, Ns(fy), is
determined by:

N(fo) = argmax { Ds(fo fit1) — Ds(fo fi) } (6)
1<i< N,

where, f; and f;11 are rank ordered Fragments with
respect to the distance of the following context. Terms
Dy(fo fiy1) and Ds(fo fi) are the distances from ref-
erence Fragment fy to Fragment f;;; and f;, respec-
tively. IV, is the maximum number of Fragments to be
compared. The number of candidate Fragments based
on the distance focusing on preceding contexts Ny(fo)
and call-types N.(fo) can also be determined by us-
ing distance D,(fo f;) and D.(fo f;). Following these
determinations, the maximum number of candidates
among the three types of distance is determined by

N (fo) = max { Np(fo), Ns(fo), Ne(fo)} (7)



< 000 > “he”, “yes”, “yes ma’am”, “hi operator”
“yeah”, “yes operator”, “yes hi”
“yeah please”, “yes good morning”
< 001 > (4‘177 (4‘1 a”
s
< 002 > “make”, “place”
< 003 > “operator I'd like”, “I want”, “I like”
“I would like”, “I'd like”
< 004 > “make this”, “place a”, “make a”
< 005 > “have”, “need”, “want”, “would like”

Table 1: Example of Grammar Fragments

All Fragments, whose ranked order in each Fragment
list is less than N(fy), are selected as a candidate of
similar Fragments. Equation (8) shows the criterion of
Fragment classification based on the order of Fragment
distance.

fo=1fil Op(fi) N (fo) N
OS(fi) < N(fo) N
Oc(fi) < N(fo) } (8)

where f) denotes the new Fragment generated by
this merging. Terms O,(f:), Os(f:), and O.(f;) rep-
resent the ranked order focusing on preceding and fol-
lowing contexts, and call-types, respectively. If there
is a Fragment similar to the reference Fragment, ref-
erence Fragment f; is updated by clustering similar
Fragments. The clustering algorithm is iterated over
the updated Fragment set. When no Fragments are
merged into reference Fragment fy by Fragment clus-
tering, Fragment fy is regarded as one of the Fragments
in the next iteration of Fragment clustering in which
other Fragments are considered in the selection of the
next reference.

Table 1 shows an example of the Fragment grammar
generated using the algorithm with the following pa-
rameter values. The number of words in a phrase is
constrained to three or fewer. Each phrase observed
30 times or more in the training transcription is se-
lected as a candidate to participate in the clustering.
The maximum number of candidate Fragments N,, is
set to 80. The Fragment clustering algorithm yields a
total of 288 phrases in 111 Fragments. Sometimes, a
given Fragment contains substrings that are themselves
Fragments with a higher frequency of occurrence than
the given Fragment. When this occurs, the given Frag-
ment can be “parsed” — i.e., the Fragment substrings
are replaced by the appropriate non-terminal symbols
representing them.

Figure 2 shows an example of Fragment generaliza-
tion by parsing Fragments. The phrase “want to make”
in Fragment < 015 > in Figure 2, for instance, can
be decomposed into “want”, “to”, and “make”. The
words “want” and “make” can be replaced by non-
terminal symbols < 005 > and < 002 >, respectively.
Therefore, the phrase “want to make” can be repre-
sented as “< 005 > to < 002 >”. This parsing allows
the Fragment grammar to acquire the ability to repre-
sent not only phrases given as input but also as word

a. Several Grammar Fragments
< 002 > “make”, “place”
< 005 > “have”, “need”, “want”, “would like”
< 015 > “want to make”, “like to place”
“like to make”

b. Grammar Fragment created from other Fragments
< 015 > “< 005 > to < 002 >, “like to < 002 >"”
word sequences matching this Fragment

“want to place”, “want to make”, “have to place”
“need to place”, “need to make”, “have to make”

“like to place”, “like to make”

“would like to place”, “would like to make”

Table 2: Grammar Fragment Generalization

sequences not observed in the training transcriptions.
Figure 2 shows an example of Fragment generalization
by parsing Fragments. In this example, the phrases in
Fragment < 015 > are generalized by using Fragments
< 002 > and < 005 >. The three phrases in Fragment
< 015 > can be represented as “< 005 > to < 002 >"”
and “like to < 002 >”. These non-terminal symbols in
Fragment < 015 > are expanded into phrases such as
“need to place” and “would like to place”. As a con-
sequence of this generalization, Fragment < 015 > ac-
quires an additional seven phrases such as “want to
place”, “would like to make” and “have to place”. By
applying Fragment generalization, 495 phrases are cre-
ated in 85 Fragments. This reveals that the average
number of phrases in a Fragment, 5.82 ( 495 / 85 ), is
increased by generalization.

For call-type classification, Salient Grammar Frag-
ments are automatically generated from the parsed
training transcriptions and associated call-types [1].
Salient Grammar Fragments are traditionally gener-
ated by using the training transcriptions not parsed
with the Fragment grammar. In this case, each Salient
Grammar Fragment comprises a call-type of the high-
est association score and a corresponding word se-
quence. The Fragment grammar enables the Salient
Grammar Fragment to represent several kinds of word
sequences having both syntactic and semantic similar-
ities. In the call-type classification process, the ASR
output is first parsed by using the Fragment gram-
mar and the Salient Grammar Fragments are extracted
from the parsed output. A call-type classifier deter-
mines the first and second most likely call-types for
each utterance by using the association between Salient
Grammar Fragments and call-types. The call-type
classification performance is evaluated by a scorer us-
ing the call-type assigned to each test-set utterance.

4 Experiment

A 10 K database of spoken transcriptions between
users and human agents was generated as detailed in
[1]. In call-type labeling, one of 15 call-types was as-
signed to each transcription. In some cases, two or
more call-types were labeled to a transcription. The
transcriptions were split into three subsets for training
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Figure 2: Call-type Classification Performance

(8 K), developing (1 K), and testing (1 K) the acoustic
and language models for recognition and understand-
ing. The training set had approximately 3.6 K words to
define the vocabulary. The speech recognition process
is performed by using the Variable N-gram Stochastic
Automaton [4] as the language model. The training
transcription contains 7,844 sentences while the test
transcription comprises 1,000 sentences.

In the call-type classification, there are two impor-
tant performance measures. The first measure is the
false rejection rate, where a call is falsely rejected or
classified as the call-type other. The second measure
is the probability of correct classification. Figure 2 il-
lustrates the probability of correct classification versus
the false rejection rate. As a baseline for comparison,
the performance without the Fragment grammar is also
shown in Figure 2.

The experimental results show that the average and
maximum improvements in call-type classification per-
formance of 2.2% and 2.8% respectively were achieved,
by introducing the Fragments. These results reveal
that the Salient Grammar Fragments used in the call-
type classifier accept various phrases that are syntacti-
cally and semantically similar to the originals provid-
ing generality. An example of the variety of phrases ac-
cepted by a Salient Grammar Fragmentis illustrated in
Figure 3. Fragment “BOS < 017 > < 004 > < 013 >”
shown in Figure 3 has an association with call-type
“COLLECT?”. Tt is remarkably worthwhile noting that
some phrases represented by this Salient Grammar
Fragment are not observed in the training set. A total
of 246 unseen salient phrases have been discovered by
clustering and generalizing the Fragment grammar.

5 Conclusion

We described a new method for automatically ac-
quiring Fragments to understand fluently spoken lan-
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<017> <004> <013>
[a] Not Expanded

003> "to" "this" "collect call please”
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"collect call"
"collect phone call"
[b] Partially Expanded
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Figure 3: Example of Phrases Accepted by a Salient
Grammar Fragment

guage. The Fragments representing a set of syntacti-
cally and semantically similar phrases were generated
by using three probability distributions of: following
words, preceding words, and associated call-types. The
Fragment grammar detected 246 phrases in the test-set
that were not present in the training-set. These re-
sults revealed that unseen phrases were automatically
discovered by our new method. The experimental re-
sults showed that the average and maximum improve-
ments in call-type classification performance of 2.2%
and 2.8% respectively were achieved by introducing the
Fragments.
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