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ABSTRACT | Eventclass | Tag [ Freq.| Example |

We study the problem of detecting linguistic events at interword Sentence S 10.8% | haven't seen It

g . . .| _boundary Not sure | like it
boundaries, such as sentence boundaries and disfluency locatiofis; = % | he uhe liked |
in speech transcribed by an automatic recognizer. Recovering " 1ld pause | FP 2.9% | he uh« liked it
such events is crucial to facilitateesgch understanding and other | Repetition REP 1.9% | hex he liked it
natural language processing tasks. Our approach is based on pgletion DEL 1.3% | it was* he liked it
a combination of prosodic cues modeled by decision trees, an J- Repair OtDF 12% | her she liked it

word-based event N-gram language models. Several model con
bination approaches are investigated. The techniques are evdl- Else/fluent else 81.8% | shex liked it
uated on conversational speech from the Switchboard corpus.
Model combination is shown to give a significant win over in-
dividual knowledge sources.

Table 1: Boundary and disfluency event classes.

scribed by humans; and a small, 19 conversation (18K words)
set was decoded with a large-vocabulary speech recognizer and
1. INTRODUCTION used for tests that involved automatic transcription. There was no
Current automatic speech recdtipn systems output a string speaker overlap between the three corpus subsets.

of words. Most natural language understanding systems, hoyge prepared a speech database that combines information from

ever, require structural information such as punctuation, whicllioys sources, and at various levels of resolution, including:
is present in text but not overtly indicated in spoken language.

Similarly, for speech understanding and information extraction, e Word transcripts
itis important to find the location and extent of disfluencies (in' ¢ Hand-labeled disﬂuency annotations and sentence segmen-

cluding self-repairs), so that a speaker's intended meaning canbe  tations prepared by the Linguistic Data Consortium [9]
inferred. We will refer to sentence boundaries and disfluencies .

. . ) Phone-level time marks produced by forced alignment of
collectively as our target “events.

the word transcripts using a non-speaker-adapted version of
Prior work on utterance boundary detection [8, 12] as well ason  the SRI Decipher(TM) speech recognizer used in the 1997
disfluency detection [5, 10] has addressed this problem, but not | VCSR evaluations [7]

in a completely realistic framework. Previous work has assumed
either a correct word sequence, or knowledge of the word bound-
aries. In reality, word information is not known, but has to be
hypothesized using a speech recognizer. This renders word-based

cues less reliable and increases the importance of prosodic cu€ke resulting database contained all information in a time-aligned
It also raises the question of how the various cues are to be cofermat. For the automatically transcribed test set we created the

¢ Raw acoustic measurements for the prosodic features de-
scribed below, such as fundamental frequency (FO) and
signal-to-noise ratio (SNR) values.

bined taking unreliable word information into account. alignments and derived information for the top 100 hypotheses
generated by the recognizer.
2. METHOD For this study, we grouped the linguistic events at word bound-
aries into six classes, comprising the major types of boundaries
2.1. Data and disfluencies we were interested in. These events are mutually

Speech data consisted of more than 1100 conversations from @¥¢lusive, and exactly one event occurs at any given interword
Switchboard corpus of human-human telephone dialogs on prgoundary. Table 1 summarizes these event classes, their relative
scribed topics [4]. The data set represents over 350 differeffeduencies, and gives an example for each. The distribution of
speakers (45% male, 55% female). The corpus was partition€¥ENt types is highly skewed; close to 82% percent of events are
into three portions: 1794 conversation sides (1.2M words) weruent, sentence-internal word transitions. This makes it difficult
used for model training; 436 conversation sides (231K wordsf)'»’r automatic classifiers to learn the distinctive features of the
were used for development and testing on data that had been tr&pich less frequent, marked event types.



2.2. Modeling as a single token stream, as described below. During testing,
To build an automatic detector of interword events we need t§'¢ model can be used as a hidden Markov model (HMM) in
model the relationships between the following entities: which the word/event pairs correspond to states and the words
to observations, with the transition probabilities given by the N-
¢ A the acoustic features used by the recognizer gram model. The model is a generalization of the hidden seg-
ment boundary language model used in [12] where the number
of events types and the context length can be arbitrary. Given a
e W, the string of spoken word&h, W, . .. word sequence, a forward-backward dynamic programming algo-
rithm is used to compute the posterior probabibty, (Ei|W) of
an eveng; at positioni.

A practical constraint for our work was to retain the standarye trained a word/event N-gram model from 1.2M words of tran-
components of a speech recognizer, i.e., #teustic model  gqrints that had been hand-labeled for the events of interest [9].
P(AW) that characterizes how well an acoustic observatiogach event was represented by an additional non-word token,
maiches a given word sequence, andwloed language model \ith two exceptions. First, we omitted eventtags for filled pauses,
P(W) that estimates tha priori probability of a word sequence. since they are redundantly encoded by the preceding word (“uh”
Both models are combined to give taeposterioriprobability o «m») "second, we did not represent the fluent, intra-sentence
P(W/|A) of a word sequence. Acoustic and word language mOdeb%undary events explitty, since they are implied by the absence
were of standard_ varieties, i.e., statt_a-clustered Gaussian mixturgpany other event tag or filled pause word. These two conven-
[3] and backoff trigrams [6], respectively. tions lead to a more compact encoding of events and make bet-
In addition to the standard models, the following statistical modter use of the limited context of the N-gram model. A 4-gram
els capture the relationship between interword events and theivodel was used for all results reported here, i.e., a word or event
cues. Theprosodic modelP(E|F,W) predicts events from their was conditioned on no more than three preceding words and/or
prosodic correlates. Finally, trevent language modeP(W,E)  events.

describes the joint distribution of words and the interveningetain other kinds of information, such as the location of speaker
events. The four model components are combined to estimatfanges (turn boundaries) and long pauses (where the waveforms
the posterior event probabiliti€} E|A, F). had been cut for processing purposes) can be conveniently en-
All our models have the property that the posteriors of individ-coded in the language model as well, and are known to improve
ual events; in E are estimated, ndE as a whole. This is both its quality for sgech recogition purposes [13, 11]. While con-
convenient and legitimate, since the overall classification error izeptually this information is part of the prosody, it is an empirical
minimized by maximizing the posterior of eaEhindependently. question whether turn and pause information is best encoded in
the prosodic model, the language model, or both. Therefore, we
2.3. Prosodic Model created two versions of the event N-gram model, one containing

As in prior work on disfluency and sentence boundary detectiof'Ch Segmentation cues (*Seg N-gram’), and one without (*No-
[8, 10], we trained CART-style decision trees [2] to predict even?d N-gram”).

classes from local properties at the word boundary of interest.

However, we use the trained tree models not simply as classi- 3. EXPERIMENTS

fiers that output the most likely class, but as probability estimators

Pr(Ej|F,W) to be combined with the other components. 3.1. Methodology

We experimented with a large collection of features capturing thé/e tested each of the three models (prosodic decision tree, event
three major aspects of speech prosody: language model with and without segmentation) in isolation for
_ ) _ their event detection accuracy. This was performed first on a test
o Duration: of pauses, final vowel and final rhymes, normalset with known words, and then on recognizer output. The recog-
ized both for phone durations and speaker statistics nizer word error on the test set was 46.8%, i.e., on average almost
e Pitch: FO patterns, preceding the boundary, across tHvery other word was incorrett.
boundary, and pitch range relative to the speaker’s baselirmgo run the event detector on recognizer output, we adopted the
e Energy: signal-to-noise ratio using a front-end tuned for thi§xpedient of simply conditioning the event models on the 1-best
corpus, to capture energy fluctuations not due to channel hypothesis:

e F, the prosodic features

e E, the sequence of interword evelig Ep, ...

While the feature extraction makes extensive use of the forced P(E|F,A) ~ P(E|F, argmaxP(WI|A))

alignment of words to the speech signal (e.g., to extract phone w

durations), it is important to note than none of our features erfhis approach is suboptimal if event detection is the overall goal,
coded the identity of words directly, affording some degree ofn that multiple hypotheses other than the best one might con-

independence from the word-based cues. This will be importagpire to raise the overall probability of an event above the one
later on during model combination.

INote that we left a number of features out of the recognizer (such as
2.4. Event Language Model speaker adaptation) which would have either created a significant compu-
. . o tational burden or an acoustic modeling mismatch between training and
The event language model describes the joint distribution Qfst sets. This resulted in performance somewhat below the current state-
words and eventsP v (W,E). We treated words and events of-the-art.



Model Type | Known Words Recognized words

segmentation LM performs worse than the prosody model. No-

% correct | % correct| % accuracy| tice that the prosody is also negatively impacted by word recog-
Chance 81.8 72.3 69.2 nition errors, since itsniput features depend on phone alignments
Prosodic Tree 88.9 76.1 72.9 and word boundary hypotheses. However, these seem to be more
No-seg N-gram 90.0 74.4 71.1 robust to errors than information based on word identity.
Seg N-gram 927 770 738 A general point about our paradigm is that only data based on

Table 2: Event recognition performance for three knowledggautomatically aligned) correct words are used for model train-

sources. All score differences are significant by a Sign tesig, thus creating an inherent mismatch when testing on partially
(p< .0001). incorrect words. We made this choice because reitiognof
large amounts of speech data is a considerable computational
Detected Events task. Thus, an overall improvement is expected if we trained
S else FP [ DEL | OthDF | REP | models on actual recognizer output, allowing the models to par-

" S| 16880 | 5065 0| 111 31 33 | tially compensate for systematic recognizer errors.

% ell;spe 35951 1628457 587% 433 1781 17(())

>

@\ peL | 393| 1524| 0| 660| 131| 48 4. MODEL COMBINATION

2 | OthDF 218 1338 0| 191 442 | 341

"] ReP| 43 892| 0] 34 97 | 2856 | 4.1. Approaches

Table 3: Confusion matrix for segment-N-gram event classifieThe goal of model combination is to make the best use of all
on known words. available knowledge sources while keeping the modeling compu-
tationally and statistically tractable. For example, it is not feasible

supported by the top hypothesis. In other words, for some afR €xplicitly model all combinations of word identity and prosodic

plications we might want to sum event posteriors over the entirfatures because of the réig large hput feature space.

N-best list:

So far we have experimented with three different model combi-

nation approaches:

P(E|A) = %P(E|W7 F)P(W|A)

This approach is complicated by the need to identify correspond-
ing events in hypotheses that differ in their words; we plan to
study this approach in future work.

A related problem concerns the scoring of event detection accu-
racy given that the number of words (and hence events) differs
between reference and hypothesis. For this study, we aligned the
word/event strings and then counted the nhumber of mismatched
events, as well as the number of events inserted and deleted. Sim-
ilar to the scoring practice used in speech redigm we report

both the percentage of correctly identified true events, and the
accuracy (+ the number of event substitutions, deletions and in- 4
sertions divided by true total). A more stringent error criterion
might require the event times to match up as well.

3.2. Results

Table 2 summarizes the results obtained for the three models
in each of two test coritions: known and recognized words.
Chance performance (obtained by labeling each word boundary
as theelseevent) is also given for reference. Results show that the
N-gram with segment information performs significantly better
than either the prosody model (which also has access to segment
information) or the N-gram without segment boundaries.

Table 3 shows a confusion matrix for the segmentation LM on
known words. The matrix indicates that the infrequent disfluency
types (deletions and other repairs) are particularly difficult to de-
tect. This could be both because of their low frequency, their lack
of distinct lexical cues, or both.

When the same three models are applied to speech recognizer
output, we observe a substantial degradation in event detectione
accuracy. As expected, the word-based models suffer most from
recognition errors in relative terms. In thismdition, the no-

Model interpolation. This is a weak approach that treats
multiple knowledge sources as alternative estimators of the
same probability distribution, which are combined by linear
interpolation. In our case, we combine the prosodic poste-
rior and the event LM posterior using an empirically opti-
mized weighting:

P(Ei|F,W) =~ APr(Ei|[F,W) + (1 - N)PLm (Ei|W)

A more refined (but as yet unimplemented) version is the
mixture of expertsvhereA is replaced by a function o/
andF.

Independent model combination.In this approach we as-
sume that the prosodic featufeare largely independent of
the wordd/V when conditioned on the even®(F |E;,W) ~
P(F|Ei). This allows the following decomposition:

PLm (Ei[W)P(F[Ei)

P(Ei|F,W) = PEW)

The denominator does not dependBrand so can be ig-
nored for classification purpose®(F|E;) is proportional

to Pé,'(z;zli';) , and can be directly estimated by a prosodic tree
thatis trained on a uniform distribution of event classes. As
in the previous approach we introduce an empirically deter-
mined balancing parametarto adjust the dynamic ranges

of the two models, giving us

_ ElF)\*

P(Ei|F,W) O PR (EiW)* A)(L( ! )

(EilF,W) O RLm (Eilw) PES
Joint modeling. Various approaches exist to allow training

of a single classifier that takes both word and prosodic in-
formation as input, while avoiding the large input space if



Model Type | Known Words Recognized words

The results reported here should be regarded as a baseline for fu-

% correct | % correct| % accuracy ture work. For example, the overall model could be improved

Seg N-gram 92.7 77.0 73.8 by including parts-of-speech (POS) or other syntactic informa-

Interpolation 93.0 78.1 74.9 tion in the event model. (We showed in [12] that using POS im-
Independent 93.0 77.4 74.1 proves sentence boundary detection, and [5] observed that POS

Joint Tree 93.1 76.6 73.3 modeling enhanced disfluency detection.) Other directions for

future improvement include event posterior probability combina-

Table 4: Event recognition performance for various model com

bination strategies. All score differences are significantby a Sigtiiuon across multiple N-bestypotheses, improved prosodic fea-

test (p < .005).

ture, and more sophisticated model combination.
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4.2. Results 1

Table 4 shows event classification accuracies for the three model
combination approaches, for both known and recognized words.

6. REFERENCES

L. R. Bahl, P. F. Brown, P. V. de Souza, and R. L. Mercer. A tree-
based statistical language model for natural language speech recog-
nition. IEEE ASSP37(7):1001-1008, 1989.

For comparison, the Seg-N-gram results are repeated as a bas7e- L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. St@lassifi-

line. The model interpolation approach is seen to be the most
robust model combination approach so far. It yielded virtually 3.
identical relative error reduction (4%) over the N-gram classifier
alone, on both known and recognized words.

While the joint tree seems to have a slight edge on known words4.
it predictably fares poorly on recognized words. A likely expla-

nation is that the posterior LM probabilities the tree is trained on

come from correct words. Testing on recognized words render§-
these input features very noisy, creating a train/test mismatch.
The approach is expected to work better if large amounts of rec-
ognizer output were available for training the joint model.

The independent combination approach performs reasonably
well, though not as well as interpolation on recognized words.7,
The results given here actually used the Seg-N-gram in the com-
bination, which violates the independence assumption of the aps.
proach, since the LM makes use of some of the same turn and
pause-related information as the prosodic model. However, when
using the No-seg N-gram in the combination instead, accuracy
went down by about 1-2%. The likely reason is that the N-gram9-
makes more effective use of turn and pause information; thus,
omitting it hurts the overall model more than the independence

violation. 10.

5. CONCLUSIONS

We have demonstrated a combined approach for the detection of
) . - A1,
interword events (sentence boundaries and four classes of dISfiLU-

encies) on spontaneous speech transcribed by an automatic recog-

nizer. The system combines prosodic and language model knowl-

edge sources, modeled by decision trees and N-grams, respes-

tively. Event detection accuracy is about 75% (78% correct) on
recognizer output with 46.8% word error, as compared to 93%
correct on human transcripts. In both test conditions, the combi=3.
nation of prosodic and word N-gram models gives a 4% relative
error reduction over the most powerful knowledge source, an N-
gram that includes turn and pause information.

6. S. M. Katz.

cation and Regression Treed/adsworth, Belmont, 1984.

V. Digalakis and H. Murveit. GENONES: An algorithm for optimiz-
ing the degree of tying in a large vocabulary hidden Markov model
based speech recognizerRroc. ICASSPvol. 1, pp. 537-540, Ade-
laide, Australia, 1994.

J. J. Godfrey, E. C. Holliman, and J. McDaniel. ~SWITCH-
BOARD: Telephone speech corpus for research and development.
In Proc. ICASSPvol. 1, pp. 517-520, San Francisco, 1992.

P. Heeman and J. Allen. Intonational boundaries, speech repairs, and
discourse markers: Modeling spoken dialog. Aroc. ACL/EACL.
Madrid, 1997.

Estimation of probabilities from sparse data for the
language model component of a speech recognilfEE ASSP
35(3):400-401, 1987.

Conversational Speech Recdtipn Workshop DARPA Hub-5E Eval-
uation Baltimore, MD,1997.

M. Mast, R. Kompe, S. Harbeck, A. KieR3ling, H. Niemann, BN~

E. G. Schukat-Talamazzini, and V. Warnke. Dialog act classification
with the help of prosody. In H. T. Bunnell and W. Idsardi, editors,
Proc. ICSLR vol. 3, pp. 1732-1735, Philadelphia, 1996.

M. Meteer et al. Dysfluency annotation stylebook for the Switch-
board corpus. Distributed by LDGtp://ftp.cis.upenn.edu-
/pub/treebank/swbd/doc/DFL-book.ps.gz, 1995. Revised
June 1995 by Ann Taylor.

E. Shriberg, R. Bates, and A. Stolcke. A prosody-only decision-tree
model for disfluency detection. In G. Kokkinakis, N. Fakotakis, and
E. Dermatas, editor®roc. EUROSPEECHvol. 5, pp. 2383-2386,
Rhodes, Greece, 1997.

A. Stolcke. Modeling linguistic segment and turn boundaries for
N-best rescoring of spontaneous speech. In G. Kokkinakis, N. Fako-
takis, and E. Dermatas, edito8foc. EUROSPEECHVvol. 5, pp.
2779-2782, Rhodes, Greece, 1997.

A. Stolcke and E. Shriberg. Automatic linguistic segmentation of
conversational speech. In H. T. Bunnell and W. Idsardi, editors,
Proc. ICSLP vol. 2, pp. 1005-1008, Philadelphia, 1996.

T. Zeppenfeld, M. Finke, K. Ries, M. Westphal, and A. Waibel.
Recognition of conversational t@leone speech using the Janus
speech engine. IRroc. ICASSPvol. 3, pp. 1815-1818, Munich,
1997.



