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ABSTRACT

In this paper, a wavelet transform domain realization of the
blind equalization technique termed as EVA is applied to speech
analysis. The conventional linear prediction problem can be
viewed as a constrained blind equalization problem. Because the
EVA does not impose any restriction to the probability
distribution in the input (the glottal excitation), the principal
features of speech can be effectively separated from a speech in a
short duration. The computational complexity will be a problem,
but the proposed implementation in a wavelet transform domain
promotes the faster convergence in the analysis of speech signal.

1. INTRODUCTION

The feature of speech can be divided into two major elements, the
glottal excitation and the vocal tract characteristics, as it is well
known. The linear prediction, a traditional tool for speech
analysis, has many advantages to extract the above features from
a short-term segment of a speech [1]. However, the analysis result
is erratic by nature; it is sensitive to the noise, the type of analysis
window and even the magnitude of spikes corresponding to the
pitch of speech [2]. This is chiefly caused by its Gaussian
assumption in the excitation signal that assures the unique
solution but inflicts the sensitivity to any change of the condition.
Essentially, the prediction residual of a voiced speech is
definitely not Gaussian because the glottal excitation signal
includes not only the noises but also some large spikes
corresponding to the pitch.

Recently, a theory called blind equalization or blind
deconvolution has gained a lot of interests along with
development of telecommunication networks. After a classical
work of Stockham et al. [3] and a pioneer work by Benveniste et
al. [4], several criteria and algorithms have been proposed and
investigated in each specific application. We are interested in the
fact that the linear prediction can be viewed as a constrained blind
equalization @or deconvolution problem because almost works do
not impose any restriction to the input sequence. The EigenVector
Algorithm for blind equalization (EVA) proposed by Jelonnek et
al. [5] is an extension of the Shalvi’s criterion that is maximizing
the magnitude of estimate’s kurtosis [6]. The realization in the
original work is based on the stochastic gradient method, hence
the convergence is slow and tends to be fastened on a local
minimum or maximum. However the EVA overcomes both the
convergence assurance and uniqueness problem.

It remains a computational problem such that the EVA requests
the maximum eigenvalue and its associate vector calculation of a

matrix, repeatedly. We note that the matrix becomes
approximately lower triangle in an appropriate orthogonal
wavelet transform domain. By this transformation, the
approximate maximum eigenvalue can be obtained by just
picking up the maximum value of the diagonal elements. This
utility promotes the faster convergence of well-known power
method in the maximum eigenvector calculation.

The experiments on the analysis of Japanese vowels with the
proposed wavelet transform domain EVA (WEVA) are presented
in this paper. The results show that not only the computational
advantage but also the essential superiority of WEVA.
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Figure 1:  Blind Equalization

2. BLIND EQUALIZATION OF SPEECH

2.1. Recovering Glottal Excitation via
Kurtosis Maximization

The blind equalization problem is to recover the input sequence
)(nx  to an unknown system )(kg , from the observed sequence
)(ny  with the equalizer )(kh . The procedure is illustrated in

Fig.1. In speech analysis, in other words, the objective is to
recover the glottal excitation signal )(nx  input to the vocal tract,
from the observed speech signal )(ny  with the equalizer )(kh .

Of course we must have some preknowledge for proper
equalization. In linear prediction, the probability distribution of

)(nx  is supposed to be Gaussian and )(kg  be minimum phase.
There are essentially inappropriate in voiced speech analysis. In
Shalvi’s work, )(nx  may consist of zero-mean i.i.d. real or
complex variables with an arbitrary probability distribution, as
long as the moments up to the fourth order exist. The reader
should note, however, that )(nx  is assumed to be real throughout
this paper. There is no restriction to )(kg , except that the
equalized signal may have a constant delay. Under these
assumptions, the criterion can be,

maximize |)](ˆ[| nxK

subject to )]([)](ˆ[ 22 nxEnxE = (1)



where ][⋅K  is the kurtosis of a sequence defined by

224 ]}[{3][][ vEvEvK −=

2.2 Eigenvector Algorithm

In EVA, Shalvi’s criterion is expressed with vector forms for
deriving the following quadratic formulas.

maximize |C| 4
T hh ,yx

subject to |R| T hh yy

where
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The signal )(nx  is the output of a virtual reference model )(kf
that is used in the calculation only.

The EVA solution to the blind equalization problem is the
eigenvector of

hh yy
,yx RC4 λ=

corresponding to the eigenvalue with the maximum magnitude.

3. ORTHOGONAL DOMAIN EVA

Let the input sequence be finite, and the equalized sequence can
be expressed as

hx Yˆ =

where x̂ @is 1×N  vector, Y  is a MN ×  matrix of
T

]1,,1,0[ −Nyyy � , and h  is a 1×M  vector. Considering this
filtering procedure in an orthogonal domain that is formed by an

MM × unitary matrix W , we have
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where hh W=w  is the orthogonal domain expression of the
equalizer. The above Eq.(10) indicates that the observed sequence

)(ny  must be transformed into the orthgonal domain, then
equalized by the filter )(khw . Therefore, the auto-correlation
and the cross-cumulant matrices in Eq.(8) are also transformed
into the same orthogonal domain.
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Substituting these matrices in Eqs.(11) and (12) into (8), we have

www hh λ=C

where

∗= WCWRC 4
-1
yy

,yx
w

in which the eigenvector corresponding to the maximum
eigenvalue becomes the EVA solution in the orthogonal domain.

In general, a square matrix wC  is not diagonalized but may be
approximately triangular. According to the Schur
triangularization theorem, we know that an arbitrary square
matrix A can be transformed to be triangular matrix of APP∗ ,
where P  is an unitary matrix. It tells us that an arbitrary matrix
can also be transformed to be triangular matrix of ∗WAW ,
where W  is also an unitary matrix. The form of the transformed
matrix depends on how the energy concentrates by the unitary
matrix W . The square matrix ∗WAW  may be upper, lower,
even left or lower triangular.

The reason for why the orthogonal wavelet basis is preferred
rather than the Fourier basis is its vanishing moment property. If a
wavelet )(tw  has p  vanishing moments and the signal )(ts has
p derivatives, its wavelet coefficients decay like jp−2 [7]:

)(2)()(|| )( tscdttwtsb pjp
jkij

−≤= ∫
where )2(2)( 2/ ktwtw jj

jk −=  and c  is a constant value. For
explaining simply, consider the two-level orthogonal wavelet
transformation such that the matrix W  transforms a square
matrix A  into the following four-level resolution domain.
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In this transformation, the matrix wC  is expressed as follows:
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where ∆  is the determinant of  yyR . In both the transformed

auto-correlation and cross-cumulant matrices,

||||||||0 LLLHHLHH <≤<<≈

is tolerably satisfied if the matrices have p  derivatives and the

wavelet with p  vanishing moments is applied. This results,









=

ww

ww

CC

CC
w

LHLL

HHHL
C

It should be noted that LL  or even LH  and HL  can be
transformed into further four-level resolution domain in which
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the condition in Eq.(18) is also satisfied with tolerable degree, but
the further transformation is not always needed.

Consequently, the matrix wC  becomes nearly lower triangle. A

typical example of the matrix is shown in Fig.2(a). The
comparison of the reliable eigenvalues and the sorted diagonal
elements of the matrix is shown in Fig.2(b). The analyzed signal
is a partial segment of Japanese vowel /o/ sampled with 16[bits],
11.025[kHz]. The length of the segment, N , is 256 and the

equalizer order M  is 16. The 8th order Daubechies wavelet is
applied. The utility of this rough approximation promotes the
faster convergence of the well-known power method.

0

5

10

15

0

5

10

15

-6

-4

-2

0

2

4

x 10
-3

(a) wC  Appearance

0 2 4 6 8 10 12 14 16
-3

-2

-1

0

1

2

3

4

5

6
x 10

-4

sorted diagonal elements

reliable eigen value

Eigen Value with Larger Magnitude

(b) Comparison of Eigenvalues

Figure 2:   Matrix property in wavelet domain.

4. CALCULATION PROCEDURE OF
WEVA

The procedure of WEVA is the same as the original EVA, except
for the wavelet transformation part and the eigenvector estimation
method. In every EVA iteration, the eigenvector corresponding to
the maximum eigenvalue is estimated by the shifted and inverted
version of power method with the maximum diagonal element of

wC  as the initial estimate.

5. APPLICATION TO SPEECH ANALYSIS

5.1. Convergence

 The analyzed speech is a partial segment of Japanese vowel /o/
that is sampled by 11.025[kHz] and the length of the segment is
256. We tested both EVA and WEVA in the condition that the
equalizer order 16=M  and 32=M . WEVA exploits the
Daubechies wavelet with the order 8 and 18, respectively. Table 1
shows the required iterations for the eigenvector estimation at
each EVA iteration step it . The iteration continues until the
preciseness of estimated maximum eigenvalue becomes less than

510− . I should be noted that WEVA uses the shifted and inverted
version of power method that is somewhat heavier than the
original power method. However the WEVA reduces the total
computational complexity and time because the iterations to
estimate the eigenvalue corresponding to the maximum
eigenvalue decreases remarkably. Fig.3 shows the normalized
kurtosis of the equalized signal. The interesting point of this result
is that the magnitude of kurtosis equalized by WEVA converges
to a larger value than that by EVA. Such result is confirmed only
when a suitable wavelet is applied, but indicates the possibility
that the wavelet transform domain blind equalization essentially
outperforms the conventionals. The waveforms of deconvoluted
excitations are shown in Fig.4. We see that the glottal excitation
is clearly presented in the equalized output from EVA and
WEVA.

 
  M=16  M=32
 it  EVA  WEVA

 (Dau8)
 EVA  WEVA

 (Dau18)
 1  31  11  197  19
 2  69  18  12  19
 3  22  9  9  11
 4  16  7  8  7
 5  28  7  8  5
 6  16  7  7  4
 7  12  7  6  2
 8  9  7  6  2
 9  8  7  5  1
 10  7  7  5  1

Table 1:  Required Iterations

5.2. Spectral Analysis

 The superiority of the blind equalization technique in the spectral
analysis is that the spectrum of the equalizer holds the exact
spectral envelope. The preciseness may be a match for or better
than the homomorphic filtering common as cepstrum in speech
researchers. Fig.5 shows the spectrum of the equalizer. The
analyzed signal is the partial segment of a synthesized Japanese
vowel /a/ with a pitch frequency 200[Hz]. The length of the
segment is 256 with sampling frequency 11.025[kHz]. The
parameters of equalizer estimated by WEVA are directly
projected into discrete Fourier domain in which 512 points
coefficients are calculated within Nyquist frequency.
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Figure 3:  Kurtosis Comparison
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Figure 4:  Waveform Comparison. (a) Speech. Equalized signal:
(b) linear prediction, (c) EVA and (d) WEVA.
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Figure 5:  Spectrum of WEVA Equalizer

Although a certain order, experimentally more than 18 for EVA
and 32 for WEVA, is required for good equalization, we can
always have the spectral envelope that seems to be an interpolated
FFT spectrum between the peaks at the pitch frequency and its
harmonics.
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