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ABSTRACT even at the expense of pruning away more promising, from the

. . understanding component’s point of view, hypotheses.
In [9], we introduced theaNGIE framework for modelling

speech where morphological and phonological substructures @ur ANGIE subword model, discussed in greater detail in the
words are jointly characterized by a context-free grammar amkxt section, is based on an underlying context-free framework.
represented in a multi-layered hierarchical structure. In [6], w€ontext-free grammars also underly numerous natural language
demonstrated a competitive word-spotter based omathele  understanding systems, including thenA system from MIT
framework and presented several results comparing the perfdf8]). The goal of the work discussed in this paper is to explore
mance of various sublexical filler models. In the present workwhether our subword framework can be integrated with a natural
completed as a part of [5], we extend theGIE framework to a  language understanding system more tightly, so that knowledge
competitive full continuous speech recognition system. Furthefeeds in both directions, allowing the NL system to help filter
more, given thakNGIE is based on a context-free framework,unpromising hypotheses early.

we have decided to combimeNGIE with TINA ([8]), a context- ) L
ge also believe that the combination eNGIE and TINA

free based framework for natural language understanding, in ] ; .
an integrated system. The integrated system led to a 21.7% raleuld yield a system to which new words can be easily added

duction in word error rate compared to a baseline word bigranWithOUt requiring _extensi_ve sublexical or Iinguisti_c retraining.
recognizer omTIS. Numerous issues relating to the constructiorf\NG!E'S shared hierarchical subword model provides a frame-
of the combined system were explored. We have also examin?é‘ﬁ)rk whereby subword structural information can be shared be-
the addition of new words to the recognizer vocabulary, one ¢¥/€€n words in the recognizer vocabulary and new words to be
the areas which we believe will benefit from thacie frame- 2dded to the vocabulary.

work and also from theNGIE-plus-TINA integration. Our com-
bined system achieved an error rate reduction of 20.8% over the 2. ANGIE AND TINA FRAMEWORKS

baseline system and outperformed several other configuration§ygi is a framework for subword lexical modelling which we
we tested not involving an integrat@diGIE-plUS-TINA. introduced in [9] and which is discussed more fully in [5]. In
1. INTRODUCTION ANGIE, word substructure is characterized by a set of context-

free rules and a set of trained probabilities. The context-free
Many spoken language systems employ a higher level IanguadgfeS are written by hand and generate a very regular, layered,
understanding component in addition to a speech recogniti

jerarchical structure, as illustrated by the example parse shown
component. The interface between the two components is bdatFigure 1. The subword structure is represented by four layers
characterized as a feed forward only process, with eithévan Deneath thevorp node. The layers are, from bottom to top,
best list (the topV full sentence hypotheses from the recognizerphonetics, phonemics, syllabification and morphology. Stress
or a word graph (a graph representation of the top scoring hyaarkings are distributed through several layers, so for example,
potheses from the recognizer, as in [10]) being passed from t@omstands for “stre_ssed root” and (ih+/ stands for “stressed
recognizer to the understanding component. The understandifiy-” The rules governing the phonemics to phonetics layer are
component then either rescores the hypotheses or chooses Réticularly noteworthy because they govern which phonological
highest scoring one that parses. Little progress has been mayj@cesses are permitted. Typically, such rules are captured in a
in terms of feeding knowledge in the reverse direction, from th€0ntext dependent manner, but sinmeGIE uses context-free
understanding component to the recognition component. An ufilles, any context dependency will be captured by our choice of
derstanding component is needed to obtain useful results frofles and nonterminals along with the trained probability model.

a spoken language system, where honoring the user's requeds ancie probability model consists of two types of prob-

rather than recognition is the aim. However, early attempts %tbilities, computed based on a bottom-up, left-to-right parse:

leveraging the understanding component for better recognitioghvancemem probabilitieandtrigram bottom-up probabilities

have met V\.”th only limited success (e..g., [7], [11]). Asa result,rhe former are the conditional probabilities of a leaf node in the
the recognizer consumes time pursuing hypotheses which mg
R

learlv be eliminated by th derstandi i h Yrse tree given its immediate left column, where a column is
clearly be eliminated by the understanding component, peragasineq as the nodes along the path from the root to a leaf. The

1This material is based upon work supported by the National Science FouﬁfigrarT1 bottom-up prqbabi_lities are the CondiFional.probabilities
dation under Grant No. IRI-9618731. of an internal node given its left sibling and its child. The full




of supporting gap phenomena when going bottom up. We also
SENTENCE considered using a top-down strategy AorGIE, but we felt that
subword structures are of an inherently bottom-up organization

e =R and we wanted to retain the bottom-up sharing, for example, of
[Morphology | ! !
FCN SROOT  UROOT2 DSUF ISUF m syllables, across words.
A A ‘ A 3. RECOGNITION WITH ANGIE
FNUC FCODA NUCLAX+ CODA NUC DNUC UCODA PAST )
In previous conference presentations, we had reported on the
fay_il Im/ fih+/ Inf I Jerl  feh/ sl [dved/ success of implementing phonetic recognition ([9]) and word-
_ _ . /\ spotting (e systems _based on thae_lE fr_amework. Before
(] [m]  {h] [ [nlfax]  [iX] [s] [ [x] [d] discussing our integration work, we will briefly report results at

implementing a basic continuous speech recognition system us-
ing ANGIE. Our implementation of a continuous speech recog-
Figure 1. Sample parse tree for the phrase “I'm interested.” nizer uses a stack-decoder strategy similar to what we used in our
word-spotter. For word-level statistics, we incorporate a word bi-
gram score when our search algorithm reaches a word boundary.
column probability is the sum of the log advancement probabilWe compared our recognizer using context-independent acoutic
ity and the log trigram bottom-up probabilities for the nodes ugnodels trained on a 5000 utterance subsetTo$ with a simi-
to the point where the current column merges with its left collarly configured baseline system using the MiTMMIT recog-

umn. The linguistic score for an entire parse is the sum of all theizer. On the December 1993 test set, AhesIE system achived
column log probabilities. an 18.8% error rate, comparable to the baseline’s 18.9%. Further

details on our recognizer implementation can be found in [5].
Our ANGIE probabilities are trained on approximately 10,000

utterances from thaTis corpus ([3]) using forced alignments 4., INTEGRATING SUBLEXICAL AND
originally obtained from ousUMMIT ATIS recognizer ([13]) and LINGUISTIC MODELLING
subsequently iterated within thenGIE forced recognition sys-
tem as described in our earlier paper ([9])N®&E has a phone Recall from our previous discussion that our sublexiaéIE
perplexity of 7.15 on test data as compared to 14.91 for a phoreodel is primarily of a bottom-up design whereas our supralex-
bigram and 9.20 for a phone trigram. ical TINA linguistic model is of a top-down design. A natural

) organizational point to combine these two models into a single
We believeanGiE offers several advantages for speech recognkegarch is at the lexical level. Our stack decoder consults the
tion tasks. Because of the hierarchical structure, different wordsyc e subword model as it attempts to construct a word hy-
which share common word substructures will share commoggthesis bottom-up. At each putative word ending, the decoder
subtrees in amNGIE parse. This permits pooling of training ¢onsuits therina NL component to obtain a score for extending
examples across all words with a given substructure. Furthghe sentence hypothesis with the proposed word. The decoder
as mentioned earlier, we believe thatGIE permits the easy then combines the scores from the two sources and the search
addition of new words to the vocabulary by sharing subworgyoceeds. A graphical illustration of this process can be found in
structural information between existing in-vocabulary and newtigure 2. Although our organization is not as tightly integrated
words. In principle ANGIE also provides a subword model for compared to combining the sublexical and linguistic modelling
the detection of new words. The bottom-up nature\8GIE  inig g single parser, it still provides a much quicker feedback cy-
should facilitate the Iattt_ar application. Finally, knowledgc_a of thegle from the NL component to the recognition. In particular, the
subword structure provided by @NGIE parse also permits Us N component is consulted at the end of each putative word as
to use the information for prosodic modelling, as in [1]. opposed to at the end of each utterance, as would be the case

For our natural language integration work, we used Mifiiga Wit either word graphs ol -best resorting.

system, which is describe in greater detail in [8]. TheA NL oy integration efforts encountered one serious difficulty. The
processing system shares many similarities Witlg IE. 1t also  ohyst parsing mechanism withinna proved computationally

makes use of a context-free grammar, designed by hand, angghensive. This mechanism implements an effect similar to the
probability model trained automatically from data.iNR has  fojlowing top level rule?:

two other features worth mentioning.INIA uses constraints to

enforce feature matching, such as number and verb tense agree- ) ) )

ment, and also to handle gaps, which occur fairly frequently in ~ Sentence=- skip" [full _parse] (skid partialparse)
English wh-queries. INA has a robust parsing mechanism to

handle sentences which are not completely well formed due taturally, the expense of hypothesizing the insertion of skip

either poor user verbalization or recognition errors. words at all possible points in the sentence leads to a combi-

Unlike ANGIE's bottom-up parsing strategyJNA uses a top- natorially e>§plosive search space. Our sc_)lution is to remove the
’ robust parsing mechanism fromnA and implement our own

down methodology. The practical ramification for our task is thaéreedy strategy in the decoder. Our strategy is as follows: For a

we cannot implement bOtANGIE andTINA in a single parser. articular hypothesis, parse as many words as possible, allowin
Instead, we will need to integrate the two parsing strategies duf? yp P y P ’ 9

ing our search process. _\Ne considere_d convertimg tq a 2Here, the * refers to zero or more, theefers to alternatives, and [] means
bottom-up strategy, but rejected the option due to the difficultgptional.




TINA 5. ADDING WORDS TO VOCABULARY

TINA Theory L
TINA Theory
TINA Theory
TINA Theory

4. If TINA returns a valid parse, l

then word n is added to the  © Wordn
stack decoder theory in place *========----------"
of the phones which constitute

the word.
Stack Decoder ‘

[ word 1 I word 2 ] prone [ phone | pnone] [ wordn ]

3. Stack decoder asks TINA

10 extend s theories by vord Since introducing theNGIE framework in [9], we have been
suggesting that one of the advantages of the framework is the
potential to support flexible vocabulary changes, such as the ad-
dition of new words to the vocabulary. We believe thatGIE’s
ability to share word substructures between existing and newly

I added words will provide better lexical support for the added
. 51?°§EZ?E"£Z§Z‘Z??§““°"E words. Further, with the integration of an NL processing system,
ANGIE v v v the combined system should have better linguistic support than,
ANGIE Theory ul
for instance, a class-gram.
g
ANGIE Theory . . . .
T 2. ANGIE proposes word end For our new word study, we envision the following scenario. The
ANGIE Theory and returns score to stack decoder

recognizer is part of a conversational system. The system may
) . ) . retrieve information from a database in response to a user query.
Figure 2: Integration ofANGIE andTINA into the stack decoder gqr example, the user may inquire about flights to California and

search process. the system may retrieve a list of cities there. At this point, we
would want to increase the recognizer’s vocabulary to include
[ Recognizer [ Total | Sub [ Del | Ins | all the cities. The salient features of this class of scenarios are
SUMMIT W/Word Bigram 180 117149123 that we know the category of the new words to be added to the

system vocabulary, the addition must be done online without ex-
tensive lexical retraining, and the number of words to be added
is small relative to the size of the total vocabulary. Ries data

set consists 0ATIS-2 andATis-3 subsets with 34 additional city
names present in theris-3 subset. We chose to use these addi-
tional city names as new words to be added in our experiment.

Table 1: Comparison of word error rate percentages for differen
recognizers.

ANGIE w/Word Bigram 188 | 11.7| 42| 2.9
SumMIT w/Word Bigram and| 18.2 | 10.8| 5.5 | 1.9

TINA 100-best Resorting
ANGIE-plus-TINA Integrated | 14.8 | 8.7 | 45| 1.6

Because we want to be able to compare systems, with and with-
out the new city names, which are identical except for the avail-
ability of lexical and linguistic training for the new city names,
we adopted the following experimental methodology. We start
only full parses. When the NL parser fails, it retraces backwardsith a recognizer trained on the full training data, with the new
until it finds a point where the NL grammar permits a sentenceity names. Then we artificially removed the benefits of the ad-
end, and it starts a new parse at that point. This strategy is obitional lexical training by setting the lexical arc weights of the
viously greedy, in that we restrict the locations where a parsgew city names to zero in treumMMmIT baseline case and by not
breaking point is inserted to the point of least backward retracesing those examples to update the probability model in the case
ment following a parse failure. However, our greedy strategwyf ANGIE. This allows both systems to be trained on exactly the
ran two orders of magnitude faster than the original robust parsame set of acoustic data. Our approach is similar to that used
mechanism, and resulted in a tractable system. in the new word work in [4]. For the linguistic training, we al-

A . f . d | . low both the class bigram baseline anda to see the new city
comparison of our integratedNGIE-PIUSTINA TCOGNIZEr |1 ac bt as unknown cities.

and several baseline recognizers is shown in Table 1. As can

be seen from the table, the integratedcIE-plus-TINA System  For our experiment, we compared adding the new city names to
results in a 21.7% error rate reduction from themmIT word  three systems: a baselis@ MMIT recognizer with a pronunci-
bigram system. Moreover, we see that the tight integration alsstion graph for sublexical modelling and a class bigram for lin-
results in an 18.7% error rate reduction from theA 100-best guistic modelling, amNGIE recognizer with a class bigram, and
resorting system, illustrating the value of the tight integration. Iran ANGIE-plus-TINA recognizer. Adding new words involves
the resorting system, we linearly interpolatedA andsuMMIT  primarily three steps. Adding the baseforms, adding sublexi-
scores, using a set of optimized weights. cal support and adding linguistic support. We assume that we

A o f th ducti h h h now the correct baseform for all the new city names in an effort
n examination of the error rate reductions show that much Qb jipit yr study to the effects of the sublexical and linguistic

the improvement is in substitutions. An examination of the OB odels. In an actual system, a dictionary, or a letter-to-sound
substitution errors corrected by the integrateds IE-plus-TINA N stem. perhaps using thNGI,E framework’ can be used. To
system suggests a large reduc_tion of numper agreement eIafR, e sublexical support, in tleUMMIT pronunciation graph
asin _th_e confusion _bet_ween fllg_hts and “flight.” Many of the case, we add the baseforms, expanded by phonological rules, to
remaining tOP substitution errors 'ntMG'E_'plus'T'NA system e graph with zero lexical arc weights, which corresponds to
are ones which are gramatlpally correct in our rules, for EXaMkeytral weights. ImNGIE, we allow the parser to share prob-
plet; NerY?rk“ be;ng substituted for “Newark” and "a” being abilities and structures with existing vocabulary words. How-
substituted for “an: ever, we discovered that there were several cases winaese
assigned zero probabilities to some of the structures in the new
3We do not enforce a feature agreement constraint for “a” and “an” in oufity Names because SUC_h structures did not occur in training data.
TINA rules. These structures were licensed by the context-free rules, but had




| [ SUMMIT | ANGIE | ANGIE-PIUS-TINA | a word bigram. We also explored the addition of new words to

Reduced 34.2% 31.2% 32.8% both anANGIE-based recognizer and a combingdcIE-plus-
Augmented| 19.2% 19.2% 15.2% TINA system. In theNGIE only case, the results were compara-
Full 18.9% 18.8% 14.8% ble to that of the baselineummIT pronunciation graph. The

combined system performed better than the other tested aug-

) ) ~ mented vocabulary configurations.
Table 2: Error rates of different systems in the presence of sim-

ulated new word additions to the active vocabulary. The development of thaNGIE framework is an ongoing pro-
cess. In terms of future work, we intend to pursue use of our
integratedANGIE-plus-TINA system in actual conversational do-

no Support from the probabmty modell There are Severa' pd’_nains, inste.ad Of theT|S data we used for the tjeported Study.
tential solutions. The one we pursued was to operatele  (Some of this work is reported by our colleague in [2]). Also, we
phone sequences based on probabilities for similar structurestfift the basic recognition infrastructure is operational.

training data, and then use the resulting phone sequences as sup-
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