
STAMP: A SUITE OF TOOLS FOR ANALYZING
MULTIMODAL SYSTEM PROCESSING*

Joshua Clow and Sharon Oviatt✝

Center For Human-Computer Communication, Department of Computer Science
Oregon Graduate Institute of Science and Technology

ABSTRACT

In this paper we describe a new automated suite of tools for
capturing and analyzing data on multimodal systems called
STAMP.1 STAMP is designed to support research and
development efforts for advancing next-generation multimodal
systems. STAMP permits researchers to analyze multimodal
system performance by: (1) recording data on users’ multimodal
input and the system’s responding, (2) supporting flexible replay
of these multimodal commands, along with n-best recognition
lists for the individual modalities and their combined
multimodal interpretation, and (3) supporting automated
analysis using different metrics of multimodal system
performance. This collection of tools currently is being used to
conduct basic research on the characteristics of multimodal
systems, and also to iterate different aspects of the Quickset
multimodal architecture.

1. INTRODUCTION

As a new generation of multimodal/media systems begins to
define itself, researchers are attempting to learn how to combine
different modes into strategically integrated whole systems. In
theory, well designed multimodal systems should be able to
integrate complementary modalities to yield a synergistic
blend— one in which the strengths of each mode are capitalized
upon and used to overcome weaknesses in the other. It has been
hypothesized that multimodal systems potentially can function
more robustly than unimodal ones that are based on a single
error-prone recognition technology, such as speech, pen, or
vision. However, actually achieving and demonstrating such a
performance advantage depends on: (1) the development of
effective multimodal systems, (2) the development of novel
metrics and empirical evaluation of the performance of
multimodal systems, and (3) the development of research
infrastructure such as automated tools that support the
development of multimodal systems.

* This research was supported in part by Grant No. IRI-9530666
from the National Science Foundation, Grant No. DAT63-95-C-
007 from DARPA, and a donation from the Intel Corporation.

✝ Authors: Center for Human-Computer Communication,
Department of Computer Science, Oregon Graduate Institute of
Science & Technology, P.O. Box 91000, Portland, OR, 97291
(joshc@cse.ogi.edu or oviatt@cse.ogi.edu; http:www.cse.ogi.
edu/CHCC/)

The goal of this paper is to describe a new suite of multimodal
data analysis tools, which are designed to permit researchers to
analyze overall multimodal system performance. This collection
of tools, called STAMP, supports the automated analysis of a
multimodal system’s individual components (e.g., speech
recognition, gesture recognition), as well as their capacity to
disambiguate one another’s meaning when situated within a well
optimized multimodal architecture.

2. BACKGROUND

Before describing the specifics of the STAMP analysis suite,
some background about the framework in which it operates is
necessary. STAMP was designed in conjunction with our
multimodal Quickset system (Cohen et al., 1997).

2.1 Quickset

Quickset is a multimodal system that processes spoken and pen-
based input. It supports map-based applications ranging from
real estate and health-care selection to community rescue
operations and military simulations. An example of the Quickset
interface for a community fire management and rescue exercise
is shown in Figure 1.

Through a combination of spoken and pen-based input that
includes pointing, gestures and graphics, Quickset users can add
entities to a map, edit or move displayed entities and ask
questions about entities and related data. They also can issue
commands to control the map’s display, filter information in the
database, and set up and activate map-based simulation
scenarios. For example, a Quickset user could draw an arrow
downwards on the map while saying “pan” (i.e., as shown in
Figure 1). As further examples, the user could point to a map
location and say “jeep” to add a jeep to the map, and then he or
she could draw an irregular line in front of the jeep icon and say
“jeep follow this route” to specify a route and initiate simulated
activity.

In Quickset, the user communicates with a wireless hand-held
PC, such as a Fujitsu Stylistic 1200. Quickset integrates spoken
and pen-based input with natural language processing and
multimodal integration subsystems via a distributed agent
architecture (Cohen et al, 1994). To process multimodal input,
Quickset uses a joint interpretation strategy based on parallel
processing of the spoken and pen-based signals. During this
processing, n-best lists are generated for the speech and gesture
input signals before and after natural language parsing has been
completed. In order to produce a final multimodal interpretation,
natural language processing then involves a statistically ranked
unification of these spoken and gestural semantic interpretations
(Johnston et al., 1997). During this process, a total of five n-best

lists are produced for: (1) speech signal recognition, (2) gesture
signal recognition, (3) interpretation of parsed spoken language,
(4) interpretation of parsed gesture, and (5) final semantic
interpretation of the multimodal language.

Quickset’s basic functionality, interface design, and empirical
specifications derive from research on the user-centered design
of multimodal systems for spatial domains (Oviatt, 1997; Oviatt
et al, 1997). Further details about Quickset, including its
functionality, interface design, language processing, and
architecture, have been outlined elsewhere (Cohen et al., 1997).

2.1 Mutual Disambiguation

The robustness of multimodal systems depends on designing an
architecture that integrates modes synergistically. In a well
designed and optimized multimodal architecture, there can be
mutual disambiguation of two input signals (Oviatt, in press;
Oviatt et al., in submission). For example, if a user says
“ditches” but the speech recognizer confirms the singular
“ditch” as its best guess, then parallel recognition of several
graphic marks could result in recovery of the correct plural
interpretation. This recovery can occur in a multimodal
architecture even though the speech recognizer initially ranked
the plural interpretation “ditches” as a less preferred choice on
its n-best list.

Figure 1 illustrates an example of mutual disambiguation from a
Quickset user’s log (Oviatt et al., in submission). In this case,
the user said “pan” and drew an arrow. Although the lexical
item “pan” was only ranked fourth on the speech n-best list, and
the arrow was ranked second on the gesture list, the correct
semantic interpretation was recovered successfully (i.e., ranked
first) on the final multimodal n-best list. This recovery was
achievable because inappropriate signal pieces are discarded
during the unification process, which imposes semantic,
temporal, and other constraints on legal multimodal commands.

Figure 1: Mutual disambiguation of speech and gesture signals
during a user’s command to “pan” the Quickset map during a
community fire management exercise

Due to mutual disambiguation, the parallel recognition and
semantic interpretation that occurs in a multimodal architecture
can yield a higher likelihood of correct interpretation than
recognition based on either single input mode (Oviatt et al., in
submission). This improvement is a direct result of the
disambiguation between signals that can occur in a well
designed multimodal system, which exhibits greater
performance stability and overall robustness as a result.

 3. SYSTEM ARCHITECTURE

The STAMP suite consists of four separate pieces: a data logger,
a loader, a marking/analysis tool and a video controller.

3.1 Data Logger

In a typical data collection session with Quickset, the user issues
multimodal commands to the system during a task. The user’s
pen input is recorded directly from the screen in the context of
the Quickset interface’s map, and simultaneous speech input is
recorded onto the same videotape. In addition to this videotape
record, the results of system processing are logged at the levels
of signal processing, parse interpretation, and final multimodal
command interpretation.

The data logger itself has been created as an agent within the
Quickset system. It is written in Prolog, and it effectively
subscribes to and saves all messages containing data events of
interest to a text file as the session runs. Initially, no attempt is
made to extract specific pieces of data or to format the output
collected, partly to expedite speed of data capture and also to
ensure the availability of a complete backup record. However,
this raw log file typically would total hundreds of pages for a
one-hour session if printed, and it also would be extremely
difficult to interpret in its original format. Even with
reformatting and data extraction, this raw log file alone is not
useful by itself for analyzing multimodal system performance,
because it does not include any record of the user’s actual
language input and performance.

3.2 Loader

Once the data session is complete, the set of raw log files then
needs to be processed for analysis. A Perl script turns the logged
agent messages into a text-delimited database format, which
then is loaded into a database created with Microsoft Access.
This database contains user information, temporal information,
the relevant n-best lists associated with each multimodal
command, and the relations between these pieces of information.

3.3 Marking/Analysis Tool

The third component is a researcher’s analysis tool, which is
written in C++. The marking/analysis tool uses the database
generated by the loader to present the data in a manageable way.
In particular, it supports the researcher as he or she reviews and
annotates the system’s output for a given command (i.e., n-best
lists) by synchronizing it with the corresponding videotaped
record of the user’s input to the system. Figure 2 illustrates the
researcher’s STAMP setup for analyzing a multimodal
command, with side-by-side screens displaying the system’s
command interpretation as n-best lists (left side) and the
corresponding videotape of a user’s original input on the map
interface (right side).

Figure 2: Researcher’s setup for analyzing multimodal system
processing

The analyzer’s main screen is split into four or five panels, as
illustrated in Figure 3. These panels correspond to the n-best
lists for speech signal recognition, spoken language parse, pen
gesture signal recognition, gesture parse, and the final
multimodal interpretation after signal integration and natural
language processing have taken place. Each panel displays the
relevant n-best list of lexical interpretations in rank order
according to probability estimates. As the researcher reviews the
video record for any given command, he or she can mark which
lexical content actually was uttered by the user and therefore is
the “correct” one, which may not be the same as the first item on
the system’s n-best list, or even present on the list at all. In the
example shown in Figure 3, the user actually spoke “zoom out”
and drew a checkmark, so the researcher has marked these
fourth and second ranked items on the speech and gesture lists.
A separate text field also permits the entry of missing correct
responses, and can be used to note any user or system
performance irregularities that would influence scorability of the
command.

This researcher’s record of annotated data then is entered into
the database and is available for analysis. By comparing the
system’s interpretation with the researcher’s scored record, it is
possible to evaluate the system’s performance for the different
input modalities as well as different levels of language
processing (i.e., unimodal signal recognition, unimodal parse
interpretation, multimodal interpretation).

In the course of analyzing multimodal commands from a
session, STAMP also provides flexible navigation controls. It
automatically determines what section of the videotape
coordinates with the system’s logged record of n-best lists, and
advances the videotape to the correct location. This enables the
researcher to avoid manual searching, and to verify very quickly
and accurately (1) what the user actually gestured and said, (2)
how these signals were formed, (3) whether any human
performance errors were evident, and (4) what technical
problems may have been present (e.g., ink skipping). STAMP
also permits automatic location of the session’s start, end, or
next logged event— where the “next” event can be defined as all
user input in sequence, only successful speech or gesture

recognition events, only successful multimodal system
integrations, or other researcher-defined types of outcomes.
STAMP also generates automated summaries of recognition and
mutual disambiguation rates averaged over subjects, conditions,
or a whole corpus.

Figure 3: STAMP’s summary of system processing for a
multimodal command represented as a collection of n-best lists
for speech signal recognition, spoken language parse, gesture
signal recognition, gesture parse, and multimodal interpretation

Except for video control, which requires an additional piece of
hardware as described below, all pieces of the above-described
multimodal analysis tool run on a standard PC using Windows
95 or NT.

3.4 Video Control

The video controller component consists of a software agent
written in C, as well as a piece of hardware (i.e., V-LAN
Express unit) that is used to issue commands to the VCR. With
an agent controlling the hardware, it is possible to use the same
software for both data collection and analysis purposes. During
data capture, the video agent resides on the subject’s machine,
and it periodically requests SMPTE timecode from the VCR,
which it associates with the computer’s clock time. These data
then are logged. This technique is similar to that used in other
computer-driven VCR systems described in usability labs
(Weiler, 1993). During analysis, the video agent accepts
commands from the analysis tool and issues its own commands
to the hardware directly, which in turn plays the videotape.

In our current STAMP setup, researcher’s annotations are
performed with the analysis tool running on a computer next to
the VCR’s monitor in order to support high-resolution displays
of all the critical information. However, depending on STAMP’s
application needs, a TV card could be used so the VCR’s display
is routed to the same screen as the analysis tool.

4. DISCUSSION

The described tools for analyzing multimodal system
performance represent the kind of infrastructure that will be
needed to support research and development on a new
generation of multimodal systems. STAMP currently is being
used to conduct research on the general characteristics of
multimodal systems, and to optimize the Quickset multimodal
system’s architecture. It provides the thorough diagnostic
information that is needed to iterate a multimodal system’s
design in an informed way.

One of the general benefits of using the described STAMP
architecture is flexibility and extensibility. Adding data to the
analyzer involves creating a new panel, associating the new
panel to the appropriate table(s) in the database, and then
ensuring that the table gets filled by the loader. The format and
presentation of the other panels need not change. In addition, by
using a proper database, many additions or modifications to the
system can be done by non-programmers. Reports and statistics
can be generated from within Access, and new browsing criteria
can be defined. Although STAMP has been developed for use
with Quickset and its different data sets, the techniques
described above are not difficult to implement and could be
applied to other types of multimodal systems and to the analysis
of other metrics.

A second version of STAMP is being designed and built to
extend its current repertoire of summary metrics, to streamline
the layout of control panels, and to increase the ability to capture
rich data in a flexible way through enhancement of annotation
features, to track irregularities involving system performance
and errors, and so forth. In the future, STAMP also will expand
its data search capabilities by permitting the researcher to
specify more complex browsing criteria. In addition, it will
incorporate a bookmarking capability that would be useful for
constructing highlights videos, and for tagging and organizing
unusual or unexpected multimodal events.

5. REFERENCES

1. Cohen, P., Johnston, M., McGee, D., Oviatt, S.,
Pittman, J., Smith, I., Chen, L. and Clow, J. Quickset:
Multimodal interaction for distributed applications,
Proceedings of the Fifth ACM International
Multimedia Conference, New York, NY: ACM Press,
New York, 1997, 31-40.

2. Cohen, P. R., Cheyer, A., Wang, M. & Baeg, S. C. An
open agent architecture, Proceedings of the AAAI
Spring Symposium Series on Software Agents,
Stanford University, Stanford, Ca., 1994, pp. 1-8.

3. Johnston, M., Cohen, P., McGee, D., Oviatt, S.,
Pittman, J., and Smith, I. Unification-based
multimodal integration, Proceedings of the ACL’97
Conference, Association for Computational
Linguistics, San Francisco, CA.: Morgan Kaufmann,
1997, 281-288.

4. Oviatt, S.L. Ten myths of multimodal interaction,
Communications of the ACM, in press.

5. Oviatt, S.L. Multimodal interactive maps: Designing
for human performance, Human-Computer Interaction
1997,12, 93-129 (special issue on ``Multimodal
Interfaces").

6. Oviatt, S. L., DeAngeli, A. and Kuhn, K. Integration
and synchronization of input modes during
multimodal human computer interaction, in
Proceedings of Conference on Human Factors in
Computing Systems: CHI '97, New York, N.Y.: ACM
Press, 415-422.

7. Oviatt, S.L., McGee, D., Clow, J., Cohen, P. and
Johnston, M. Robust functioning through mutual
disambiguation in a multimodal system architecture,
in submission.

8. Weiler, P. Software for the Usability Lab: A Sampling
of Current Tools (panel), in Proceedings of
Conference on Human Factors in Computing Systems:
CHI '93, New York, N.Y.: ACM Press, 57-60.

