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ABSTRACT

This paper proposes a simple and e�cient time domain
technique to estimate an all-poll model on a mel-frequency

axis (Mel-LPC). This method requires only two-fold compu-

tational cost as compared to conventional linear prediction
analysis. The recognition performance of mel-cepstral pa-

rameters obtained by the Mel LPC analysis is compared
with those of conventional LP mel-cepstra and the mel-

frequency cepstrum coe�cients (MFCC) through gender-

dependent phoneme and word recognition tests. The re-
sults show that the Mel-LPC cepstrum attains a signi�cant

improvement in recognition accuracy over conventional LP

mel-cepstrum, and gives slightly higher accuracy for male
speakers and slightly lower accuracy for female speakers than

MFCC.

1. INTRODUCTION

In the front end of speech recognition system, it is im-
portant to parameterlize the perceptually relevant aspects

of short-term speech spectrum. In �lter-bank based systems,

auditory-like frequency resolution has been incorporated into
parameterlization such as mel frequency cepstral coe�cients

(MFCC) [1], perceptual linear predictive (PLP) [2] and mel-

linear predictive (LP) cepstral coe�cients [3]. These param-
eters have been shown to be superior to conventional LP

cepstrum.

On the other hand, the LP analysis has been widely

used as a front end in speech recognition system because

of its computational simplicity and e�ciency. However, the
all-pole model approximates speech spectra equally well at

all frequency band, and thus this property is inconsistent

with human hearing. Although the LP spectrum is usually
warped in cepstral or linear predictor domain after LP analy-

sis [4], the frequency resolution is not improved yet by such a

post processing. To alleviate this inconsistency between LP
and auditory analysis, Strube [5] proposed a linear predic-

tion on warped frequency scale based on a bilinear transfor-
mation, and investigated several computational procedures

classi�ed into "autocorrelation" and "covariance" methods.

This analysis method was proved to be e�ective in speech
coding [6], and could potentially produce improved cepstral

feature as the MFCC or PLP analysis. However, this method

has been rarely used in speech recognition due to relatively

high computational load compared to conventional LP anal-
ysis. Another all-pole modeling on mel-frequency scale was

proposed as a special case (
 = �1) in the mel-generalized

cepstral analysis method [7]. This method needs an iterative
procedure to minimize a non-linear criterion.

This paper proposes a simple and e�cient time-domain

technique to estimate an all-pole model on mel-frequency

axis by Strube based on the error minimization on the lin-
ear frequency axis. The computational cost is only twice

as much as conventional LP method without any approxi-

mation. This technique will be refer to as Mel-LPC analysis
method (hereafter "warped" will be replaced by "mel"). The

recognition performance of mel-cepstral parameters obtained

by the Mel-LPC analysis is compared with those of conven-
tional LP mel-cepstra and the mel-frequency cepstrum co-

e�cients (MFCC) through gender-dependent phoneme and

word recognition tests.

2. MEL-LPC ANALYSIS

2.1 Autocorrelation Method

on Mel-Frequency Axis

In this study, we consider a speech segment of �nite length,
x[0]; ::; x[N � 1], which is usually windowed and preem-

phasized in advance. In the "autocorrelation" method by

Strube [5], the standard autocorrelation method is applied

to frequency-warped speech signal f~x[n]g which is de�ned by

~X(~z) =

1X
n=0

~x[n]~z�n = X(z) =

N�1X
n=0

x[n]z�n (1)

where ~z�1 is the �rst order all-pass �lter,

~z
�1

=
z�1 � �

1 � � � z�1 : (2)

Fig.1 illustrates this method. In spectral domain, an all-poll

model ~�= ~A(~z) approximates the warped spectrum ~X(ej
~�)

converted from the spectrum X(ej�) on the linear frequency

axis by the following phase transfer function of the all-pass

�lter;

~� = � + 2 � tan�1
n

� sin �

1� � cos �

o
: (3)
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Figure 1: All-poll modeling on the mel-frequency axis.

The inverse �lter on the mel-frequency axis,

~A(~z) =

pX
k=0

~ak~z
�k
; ~a0 = 1 (4)

is estimated by Durbin's algorithm using the following mel-
autocorrelation coe�cients:

~r[m] =

1X
n=0

~x[n]~x[n�m] (5)

However, as shown in equation (1), since the bilinear trans-

formation of a �nite sequence results in an in�nite sequence,

the direct calculation of the mel-autocorrelation coe�cients
in equation (5) is not practical. Then, Strube proposed three

methods to approximate ~r[m] [5]. However, these require a

FFT spectrum or a longer autocorrelation sequence of x[n],
and thus are computationally undesirable from a practical

point of view.

2.2 Mel-Autocorrelation Method

on Linear Frequency Axis

Strube also suggested two time domain methods based on

direct error minimization for x[n] [5]. The total error power
~�2 on the mel-frequency axis can be written by the integral

on the linear frequency axis as follows:

~�2 =
1

2�

Z �

��

�� ~A(ej~�)X(ej�)W (ej�)
��2d�; (6)

where

W (z) =

p
1 � �2

1� � � z�1 : (7)

Thus, on the linear frequency axis, the error minimization on
the mel-frequency axis is equivalent to minimize the output

power of ~A(z) exited by the pre-�ltered signal xw[n] with

W (z) as shown in Fig.2. However, since xw[n] is an in�nite
sequence, this minimization problem is not tractable.

This paper proposes another estimation method in which
W (z) in Fig.2 is removed as shown in Fig.3. This modi�ca-

tion is equivalent to replacing x[n] in Fig.2 by the signal

x[n] - W (z) -

xw[n]
~A(~z)

~e[n]
-

1X
n=0

(�)2 - ~�2

Figure 2: Mel all-poll modeling on the linear frequency

axis.

whose z-transform is X[z]W�1[z]. Therefore, the inverse �l-
ter, which is denoted by ~Aw(~z), is no longer the same as ~A(~z),

but instead ~Aw(~z) includes the e�ect of W
�1(z). However,

as will be seen later, this e�ect can be exactly removed in

the mel-autocorrelation domain.

As a result of minimizing the total error power ~�2w over
in�nite time interval, the mel-predictors ~aw;k's are obtained

by solving for the following normal equation:

pX
j=1

�(i; j)~aw;j = ��(0; i); (i = 1; ::; p); (8)

where the coe�cient �(i; j) is given by

�(i; j) =

1X
n=0

yi[n]yj [n]; (9)

using the output sequence yi[n] of the ith order all-pass �lter
excited by y0[n] = x[n]. In terms of Parceval's theorem,

�(i; j) can be rewritten on the mel-frequency axis as

�(i; j) =
1

2�

Z �

��

�� ~X(ej
~�) ~W (ej

~�)
��2� cos(i� j)~�d~�: (10)

where ~W (~z) is equal to W�1(z). Consequently, �(i; j) is

equal to the autocorrelation coe�cient ~rw(ji � jj) whose

Fourier transform is equal to the warped and frequency-

weighted power spectrum j ~X(ej
~�) ~W (ej

~�)j2. Therefore, the

normal equation (8) becomes an autocorrelation equation as

in conventional LP analysis.
Most importantly, since �(i; j) is a function of the di�er-

ence ji� jj, �(i; j) becomes equal to the sum of the following

�nite terms without any approximation;

�(i; j) = ~rw(ji � jj) =
N�1X
n=0

x[n]yji�jj[n] (11)

Therefore, due to the cost for computing N points of yi[n]

for each i, the Mel-LPC analysis is accomplished with about
two-fold increase in computation over conventional LP anal-

ysis. This computational load is much lower than those of

both "autocorrelation" and "covariance" methods in [5].

Finally, the mel-inverse �lter ~A(~z) is easily obtained by

deriving ~r[m] from ~rw[m] as follows. Since the z-transforms

of ~r[m] and ~rw[m] are j ~X(~z)j2 and j ~X(~z) ~W (~z)j2, respectively,
~r[m] is exactly calculated from ~rw[m] using the equation,

~r[m] = �0~rw[m] + �1
�
~rw[m� 1] + ~rw[m + 1]

	
; (12)

where �0 = (1 + �2)(1 � �2)�1=2, and �1 = �(1� �2)�1=2.

In speech recognition applications, however, ~rw[m] can be

x[n] - ~Aw(~z)

ew[n]
-

1X
n=0

(�)2 - ~�2w

Figure 3: The proposed mel all-poll modeling on the

linear frequency axis.



used, since the estimated spectrum ~�w= ~Aw(~z) represents

the envelope of ~X(ej
~�) ~W (ej

~�) and ~W (~�) works like a pre-

emphasis.

2.3 Smoothing on Mel-Frequency Axis

The harmonics in lower mel-frequency band become so much
sparse that single harmonics appear as spectral poles. This is

undesirable in all-pole modeling, especially for female voices.

In order to alleviate this problem, the mel autocorrelation
coe�cient ~r[m] is weighted by a lag window. This lag win-

dowing is similar to a mel-�lter bank in the mel LP or MFCC

analysis. In this study, we choose the Blackman and Harris
window as a lag window, and examine its appropriate length

in later experiments.

3. EVALUATION

3.1 Database and Speech Analysis

In this study, we used 520 words uttered by each of 60

male and 60 female speakers from the ATR C-set database.

The recognition performance of mel-cepstral parameters
(MLPC) obtained by the Mel-LPC analysis was compared

with those of conventional LP mel-cepstra (LPMC) and

MFCC through gender-dependent phoneme and word recog-
nition tasks. For three analysis methods, the speech sig-

nal from ATR database was down-sampled to 12kHz. A

speech segment of 20ms with frame shift of 10ms was pre-
emphasized with (1 � 0:95z�1), and was weighed by Ham-

ming window. A feature vector consists of both cepstral and

delta-cepstral coe�cients excluding the 0th terms (power
terms). The number of cepstral coe�cients was set equal

to the predictor length for all-poll modeling and to the num-

ber of �lter channels minus one for MFCC analysis.
In the isolated word recognition task, two set of gender-

dependent phoneme HMMs were used; a set of 35 phonemes

and a set of 260 context-dependent phoneme including si-
lence. In the phoneme recognition task, only the �rst set

was used. The structure of HMMs is a left-to-right model

with 3 emitting states, which consist of 4 gaussians for 35
phonemes and 2 gaussians for 260 phonemes. Each phoneme

model was trained using 520 words from each of 40 speakers

for each gender. All the words from the other 20 speakers
was used for testing. A syntax consists of the preceding and

following silences for a word. In phoneme recognition task,

the results are evaluated in terms of percentage accuracy
(Acc = [(N � S � D � I)=N] � 100%), and percentage cor-

rect (Corr = [(N � S �D)=N] � 100%), where for N tokens,

S, D, and I are substitution, deletion, and insertion errors,
respectively.

3.2 Phoneme Recognition
(1) E�ect of Warping Factor

First, we examines the e�ect of the warping factor � on
phoneme recognition accuracy. As the bilinear transforma-

tion is an approximation of herz-to-perceptual scale map-

ping, the optimum warping factor is not clear. According to

Table 1: E�ect of frequency warping parameter in Mel-

LPC analysis in phoneme recognition.

� Male Female

Acc Corr Acc Corr

0.37 63.9 74.9 54.9 74.1

0.41 64.9 75.0 55.7 74.3
0.50 64.4 74.2 55.5 74.0

the mel-herz and Bark-herz transformations [8], [9], the mel
and bark frequency scales are approximated by � = 0:41 and

� = 0:50, respectively. Then, three values of 0.37, 0.41 and

0.50 were evaluated. Table 1 shows the results of phoneme
recognition for male and female speakers. This table shows

that � = 0:41 gives the best scores for both genders. Al-

though the approximation to the Bark scale seems to be
appropriate as to spectral resolution, the result indicates the

mel scale is suitable. This value of � will be used throughout

the following experiments.

(2) E�ect of Analysis Order

Second, the performance of three analysis methods were
compared in phoneme recognition task using the set of con-

text independent HMMs. Table 2 shows the phoneme recog-

nition scores as a function of the number of cepstral coef-
�cients. MLPC attains 1.4 to 7.1 percent higher accuracy

depending on the analysis order and genders than conven-

tional LP mel-cepstral coe�cients. These di�erences become
greater in higher analysis order. The performance of conven-

tional LP mel-cepstrum with the order of 18 corresponds to

Mel-LPC cepstrum with the order of about 12. In com-
parison with MFCC, MLPC is slightly better than MFCC

for male speakers, but slightly worse in higher orders than

MFCC for female speakers. This is considered to be caused
by high pitch harmonics of female voices. Insertion errors

are larger for female speakers than for male speakers.

(3) E�ect of Lag Window Length

To �nd out the optimal length of lag window for high pitch

voices, phoneme recognition experiments were carried out
for the analysis order of 14 with the lag window length of

100 to 160. Table 3 shows the scores as a function of the

window length. The window length of about 140 seems to be

Table 2: Comparison of three type of mel-cepstral pa-

rameters in phoneme recognition.
(A) Male speakers

Analysis MLPC MFCC LPMC
Order Acc Corr Acc Corr Acc Corr

10 60.8 72.5 59.2 73.1 58.2 69.9
14 64.9 75.0 63.2 74.3 61.0 73.3

18 65.8 75.3 65.3 75.3 61.7 73.9

(B) Female speakers

Analysis MLPC MFCC LPMC
Order Acc Corr Acc Corr Acc Corr

10 50.1 71.4 48.7 73.4 48.7 71.4
14 55.7 74.3 57.6 75.3 48.6 72.9

18 57.5 75.0 57.2 75.0 51.3 73.9



Table 3: E�ect of lag-window length for Mel-LPC anal-

ysis in phoneme recognition.

Lag Male Female

[point] Acc Corr Acc Corr

1 64.9 75.0 55.7 74.3

160 65.1 74.9 55.9 75.4
140 65.0 75.0 56.7 75.5

120 64.6 74.8 56.7 75.4

100 62.4 74.8 56.7 74.8

Table 4: Comparison of word recognition rates ob-

tained by three mel-cepstral parameters.
(A) Male Speakers

Context MLPC MFCC LPMC

Context Free 92.1 91.5 90.7
Context Depend. 96.3 96.2 95.4

(B) Female Speakers

Context MLPC MFCC LPMC

Context Free 87.2 89.1 84.8

Context Depend. 93.4 94.4 90.9

best, giving 1.0 percent improvement in accuracy for female

speakers.

3.3 Word Recognition

Using two sets of phoneme HMMs, the performances of
three analysis methods were compared through isolated word

recognition of 520 word vocabulary. The analysis order was

set to 14, and the lag window with a lenght of 140 was ap-
plied only to female speech. As shown in Table 4, the rela-

tive recognition scores among three methods are similar to

those in the phoneme recognition. MLPC attains the high-
est scores for male speaker, but slightly lower scores than

MFCC. The improvements in recognition rate by MLPC and
MFCC over LPMC are larger for female speakers than for

male speakers.

4. DISCUSSION

The Mel-LPC analysis has been shown to be superior to

conventional LPC analysis in speech recognition. While the
performance of the mel-LPC is slightly better than that of

MFCC for male speakers, it is slightly worse than MFCC for

female speakers due to too much frequency resolution in low
frequency band. Although this disadvantage was improved

by lag windowing on the mel-frequency axis, it was unsatis-

factory. Therefore, it might be required to reduce frequency

resolution in lower frequency band while preserving spectral

resolution of close formants. Further improvements are ex-
pected by choosing appropriate time window as well as lag

window.

The performance of the Mel-LPC cepstrum is compara-

ble to that of MFCC, but the Mel-LPC analysis has still an
advantage on computational load over the MFCC analysis.

This method does not need FFT calculation and log conver-

sion. The major computations required are all-pass �ltering,

correlation calculation, Durbin's recursion, and predictor-
to-cepstral conversion. Therefore, the Mel-LPC analysis is

desirable for practical implementation.

5. CONCLUSION

This paper has presented a simple and e�cient time do-
main method for mel-scaled all-pole modeling on the lin-

ear frequency axis. The computational cost is only twice as

much as conventional LP method, The proposed method has
achieved a signi�cant improvement in recognition accuracy

over conventional LP analysis, and a slightly higher recogni-

tion accuracy for male speakers than the MFCC analysis.
In future work, it is necessary to develop a spectral

smoothing method for high pitch voices, and to evaluate the
performance in noisy speech recognition, and in continuous

speech recognition.
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