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ABSTRACT

This contribution describes a method for the automatic prosodic
labeling of multi-lingual speech data. The prosodic labels are
word boundary strength and word prominence. The speech sig-
nal and its orthographic representation are first transformed to
feature vectors comprising acoustic and linguistic features such
as pitch, duration, energy, part-of-speech, punctuation, word
frequency and stress. Next, the feature vectors are mapped to
prosodic labels via a cascade of multi-layer perceptrons. Experi-
ments on 6 different languages demonstrate that combining
acoustic with linguistic features yields a better performance than
obtainable on the basis of acoustic features aone.

1. INTRODUCTION

It is well known that high quality speech synthesis can only be
achieved by incorporating accurate prosodic models to detect
prosodic phrase structure, to identify phrasal prominence and to
determine phoneme durations. The ultimate goal of a prosody
module is to improve the naturalness and, to a lesser extent, the
intelligibility of synthesized speech. The prosodic models are
often derived from large speech databases which are labeled
both a a phonetic and a prosodic level. As manua labeling
suffers from some major drawbacks, we aim to use automati-
caly labeled databases for that purpose. In this paper we will
deal with the automatic prosodic labeling of multi-lingual
speech data. The automatic phonetic segmentation and labeling
(annotation) is dealt with elsewhere [7, 8].

The prosodic events we are concerned with are prosodic phras-
ing and phrasal prominence. Prosodic phrasing refers to the
grouping or separating of words within a sequence of spoken
words, and phrasal prominence refers to the relative importance
of the words in a prosodic phrase. Following the findings of
Portele et al [4], and of many others before them (see [4] for an
overview), it was established that both phrasing and prominence
are gradual phenomena. The diguncture or coherence between
two words is expressed by means of a prosodic boundary
strength (PBS) between 0 and 3: O refers to ordinary word
boundaries, and values 1, 2 and 3 refer to weak, intermediate
and strong boundaries respectively [2]. Phrasa prominence is
labeled by assigning to each word a prominence (PROM) value
between 0 and 9, with 0 being used for words which are not at
al prominent and 9 being used for most prominent words.

In the next section we will review two successful approaches to
automatic prosodic labeling that have been reported in the litera
ture. Our system, described in section 3, was inspired by these
efforts. Basically, the speech signal and its orthography are
mapped to a series of acoustic and linguistic features, which are
then mapped to prosodic labels using multi-layer perceptrons

(MLPs). The acoustic features include pitch, duration and
energy on various levels; the linguistic ones are part-of-speech
labels, punctuation, word frequency, etc. In section 4, we
demonstrate that the linguistic prosodic features are to some
extent complementary to the acoustic ones, especialy for word
prominence. We also show that the prosodic labeling perform-
ance is better when the phonetic annotation was done manually,
but that the degradation obtained by using an automatic annota-
tion remains sufficiently small.

2. SOME EXISTING SYSTEMS

Often, automatic prosodic labeling is viewed as a standard
recognition problem involving first feature extraction and then
classification. The feature vector extraction maps the speech
signal and its orthography to a time sequence of feature vectors
that are ideally good discriminators of prosodic classes. The goal
of the classification component is to map the sequence of feature
vectors to a sequence of prosodic labels. If some kind of lan-
guage model describing acceptable prosodic label sequences is
included, an optimization technique like Viterbi decoding is
used for finding the most likely prosodic label sequence.

This idea is elaborated thoroughly by Wightman and Ostendorf
[9]. Intonational labeling is performed at the syllable level, with
each syllable being marked as either prominent, carrying a
boundary tone, both prominent and carrying a boundary tone, or
neither prominent nor carrying a boundary tone. In addition,
word boundaries are labeled with a 7-scale break index (break
index labeling). In essence, feature vectors are mapped to poste-
rior probabilities via decision trees, and these are combined with
a Markov model of the prosodic label language. The feature
vectors in [9] comprise continuously-valued duration, pitch and
energy measures, and some categorical features such as a flag
indicating whether or not the word was followed by a breath.

The success of the above approach was further demonstrated in
the framework of the German VERBMOBIL project (see e.g.
[1]). The scope there was to study different reference labels
(syntactic-prosodic labels obtained automatically during text
generation, hand-marked syntactic-prosodic labels, or the more
perceptua prosodic labels), different feature vectors, different
classes to distinguish (e.g. combinations of boundary labels,
combinations of accent labels, and combinations of boundary
and accent labels), different classifiers (MLPs, Gaussian distri-
bution classifiers, polynomid classifiers), as well as different
language models (e.g. a 5-gram language model of the ortho-
graphic word chain separated by boundary labels). Each feature
vector was composed of alarge number of acoustic features (du-
ration, pitch, energy) and afew simple linguistic features such as
aflag indicating whether or not a syllable carries primary lexical
stress. Syntactic/semantic features, if used at al, were mostly
used in combination with the output of the classifiers.
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Figure 1: Prosodic feature extraction and classification.
3. SYSTEM OUTLINE 3.3. Prosodic Features
3.1. Introduction Trying to come up with a compact set of features that is suitable

for every speaker and language is an endless task. The cues for
Following the successful approaches described above, we also  signaling boundaries and accents are to a certain esqdeaker
view automatic prosodic labeling as a recognition problem. We  dependent. The speaker has at her or his disposal a number of
could not find a prosodic label language model that caused a  different cues, such as presence/absence of pauses, pause length,
sufficiently large reduction in perplexity to justify the increased ~ pitch contour position, pitch excursion, amplitude, syllable
complexity due to the need for a Viterbi decoder. Therefore we  duration. A good speaker will use all of these cues in a regular
have decided to skip the language model in our present system.  fashion; a poor speaker will use only some of them and irregu-
The prosodic labeling is thus reduced to a ‘static’ classificatidarly. Consequently, one has to adjust what counts as a strong
problem, involving feature extraction and classification (Fig. 1).and a weak boundary/accent depending on the speaker. What is

more, the cues for signaling boundaries and accents are defi-
3.2. Feature Extraction and Classification nitely language dependent. It is, for example, not realistic to

expect that French boundaries are signaled in the same way as
For the purpose of obtainiragoustic features, the speech signal pytch ones. The word-initial glottal stops so common in Ger-
is analyzed by an auditory model [6]. The correspondinghanic languages will not be present in Romance languages to
orthography is supplied to the grapheme-to-phoneme compongpéak up the speech stream. To get around these difficulties we
of a TTS system, yielding a phonotypical phonemic transcrigsimply extract as many features as we can possibly think of, and
tion. Both the transcription and the auditory model outputgave it to the classifier to determine the relevant ones for a
(including a pitch value every 10 ms) are supplied to the aut@articular speaker and language. The reader is referred to [1, 4,

matic phonetic annotation tOOl, which is described in detail in [b] for a phonetic and empirica| motivation of the features.
8]. The phonetic boundaries and labels are used by the prosodic

feature extractor to calculate pitch, duration and energy featurBgoustic PBS Features. Similar to Batlineret al [1] our acous-

on various levels (phone, syllable, word, sentence). A linguistitc features describe the speech segments representing the three
analysis is performed to produliaguistic features such as part- words (syllables) preceding and the two words (syllables)
of-speech information, syntactic phrase type and word fréollowing the boundary to classify. These 5 words and 5 sylla-
quency. Syllable boundaries and lexical stress markers des are characterized by 110 parameters representing the pitch
provided by a dictionary. Both acoustic and linguistic feature3nd energy contours over the corresponding speech intervals,

are combined to form one feature vector for each word (PRORNd by 18 parameters providing durational information. Also
labeling) or word boundary (PBS labeling). provided are the durations of the pauses surrounding the pre-

o _ boundary word, and of the glottal closure of the postboundary
The classification component of the prosodic labeler starts Ryord. Pitch and energy values are normalized with respect to the
mapping each PBS feature vector to a PBS label. Since phrag@dan pitch and energy of the sentence. Segmental durations are

prominence is affected by prosodic phrase structure, the PB§rmalized per phone type by subtracting the mean and dividing
labels are used to provide phrase-oriented features to the wekgthe standard deviation of the type [9].

prominence classifier. Both classifiers are fully connected MLPs

of sigmoidal units. The PBS MLP has 4 outputs, each or¥ote also that we do not use any information concerning breaths
corresponding to one PBS value. The PROM MLP has 1 outpigontrary to [9]). In fact, breaths were replaced by pauses prior
only. In this case, PROM values are mapped to the [0:1p the prosodic feature extraction with the purpose of improving

interval. The automatic labels are rounded to integers. the automatic phonetic annotation (see [7]).



If aword starts with an unvoiced stop, there is some discussion  and the hand-marked prosodic labels. Hence, we measure the
as to whether the silence preceding the burst is just aclosure or ~ performance of the automatic labeler against a human labeling
an intended pause. Similar to Sanderman ([5], p. 17), such  of the same data. The error-backpropagation training of the

silences are labeled pausesif they are longer than 100 ms. MLPs proceeds until a maximum performance on the cross-

validation set is obtained. Both MLPs have 1 hidden layer; the

number of hidden nodes is chosen so that the number of
parameters in each MLP is about 2000.

Linguistic PBS Features. For each word boundary, the follow-
ing linguistic features are derived for the preboundary word:
number of words and position of the word in the sentence,
distance in words to the previous and next punctuation, type of  The test set results for PBS and PROM are shown in Tables 1
the next punctuation (e.g. colon, period,...), word frequencynd 2 respectively. Since the database contains sentences, the
number of syllables, letters and capital letters in the word®BS predictions apply only to within-sentence boundaries. As
position of the primary stress relative to the word start anthe majority of the word boundaries have PBS=0, we have also
ending, most likely part-of-speech of the word, accentability dhcluded the performance of a baseline predictor always yielding
the word (something like the content/function word distincton)PBS=0. There appears to be a correlation between the complex-
etc. This yields about 70 features, depending on the language of the task (measured by the performance of the baseline
(not all languages have the same number of part-of-speeatedictor) and the labeling performance. For PROM we give the
labels). Since syntactic phrase types were not yet available fxact identificatiort 1, so as to compare PBS and PROM label-

all languages, we have not incorporated them so far. ing accuracy on a similar scale.

Acoustic PROM Features. Prominence features were derivedAdding linguistic features does improve the prosodic labeling
by assuming that the perception of word prominence is trigger@erformance significantly. The PROM labeling is improved
by the primary stressed syllable. Contrary to what was found faramatically; the improvements for PBS are smaller, but taken
PBS, it did not help to include acoustic features describing ttes a whole they are significant too. Hence, there seems to be
words surrounding the one to be scored. We thus restricted 9ome vital information contained in the linguistic features. This
the acoustic PBS features describing the word, its stresseduld indicate that the manual labelers were to some extent
syllable, the pauses surrounding the word, and the glottal closundluenced by the text, which is of course inevitable. We can not
of the succeeding word. compare our results with those mentioned in the literature as
nearly everybody utilizes different corpora and different

Linguistic PROM Features. Same as the PBS features. prosodic labels.

Additional PROM Features. As indicated before, the PBS la-

bels provide additional features, such as the PBS before %‘Qnguage ‘PBS=0’ AC AC + LI
after the word, and the position of the primary stressed sylla
in the prosodic phrase. Prosodic phrases are obtained ﬁ:cr: Zgé ;612(8;3) ;gg(g%)
interpreting the highest PBS values as phrase breaks. erican : 6(0.79) 2(0.72)
French 75.2 77.4(0.74) 78.7 (0.78)
German 70.0 79.0 (0.84) 81.7 (0.87)
4. EXPERIMENTAL EVALUATION ltalian 206 87.7(0.89) 88,5 (0.90)
4.1. Prosodic Databases Spanish 86.9 91.6 (0.84) 92.6 (0.86)

Table 1: PBS labeling performance of the baseline predictor
We evaluated the prosodic labeling tool on 6 databaséBBS=0), an MLP labeler using acoustic features (AC) and an
corresponding to 6 different languages: Dutch, AmericaMLP labeler using acoustic plus linguistic features (AC+LI):
English, French, German, ltalian and Spanish. Each databag@ct identification (%) and correlation.
contains about 1450s0lated sentences representing about 140

minutes of speech. The sentences include a variety of text styles, | anguage AC AC + LI
syntax patterns and sentence lengths. The recordings were made Dutch 79.1 (0.81) 80.6 (0.82)
with professional native speakers (one speaker per _Ianguage). American 69.7 (0.82) 76.7 (0.87)
All databases were carefully hand-marked on a prosodic level by
. : : . French 76.1 (0.75) 81.7 (0.81)
a native or near-native labeler. Further details on the design of
. . German 73.6 (0.80) 79.1 (0.84)
these corpora are given in [3]. talian 74.6 (0.80) 84.1 (0.89)
4.2. Prosodic Labeling Results Spanish 80.2 (0.83) 926(0.92)

Table 2: PROM labeling performance: exact identification + 1
In this section we present labeling performances using (1) or{B6) and correlation.
acoustic features, and (2) acoustic plus linguistic features. Re- ) .
sults using only linguistic features will not be presented he.3. Influence of Phonetic Annotation

since they boil down to prosodiadeling and notlabeling. . ) ) . o .
It is obvious that the underlying phonetic annotation is of crucial

Each database is partitioned into a training set (75%), a crogsyortance to the prosodic labeling performance. If phone
validation set (10%) and a test set (15%). The labeling perforrheundaries are wrong, so are the acoustic features derived from
ance is measured by calculating on each data set the correlatibiese boundaries: pitch, duration and energy will be calculated
mean square error and confusion matrix between the automatier the wrong signal parts. In order to assess the influence of



the quality of the phonetic annotation, about 20 minutes of
speech of three language database were manually segmented and
labeled on a phonetic level. For these 20 minutes, the phonetic
segmentation and labeling supplied to the feature extractor con-
sisted of either (1) the hand-marked segments and labels, (2) the
labels and segments emerging from the automatic annotation
system when supplied with the hand-marked labels, or (3) the
labels and segments emerging from the automatic annotation
when supplied with the phonotypical phonemic transcription.
The prosodic |abeler was trained on 15 minutes and tested on the
remaining 5. No cross-validation was used this time; instead,
performance was optimized on the test set. Only acoustic fea-
tures were used, together with 2 simple lexical features (for
PBS: number of syllables in the words before and after the
boundary; for PROM: number of syllables in the word and
position of the primary stressed syllable in the word). The test
set results are given in Tables 3 and 4.

'Language @) @) ©)
American = 76.4 (0.84) 76.8 (0.84) 77.4(0.83)
'French 76.7 (0.76) 74.6 (0.75) 71.4(0.72)

'Spanish 95.6 (0.93) 94.2 (0.92) 94.0 (0.92)
Table 3. PBS exact identification (%) and correlation for
different phonetic annotations supplied to the prosodic feature
extractor. Situations (1), (2) and (3) are explained in the text.

'Language ) 2 ©)
American | 74.4(0.81) 76.4 (0.81) 71.3(0.79)
French 78.6 (0.81) 74.7 (0.80) 70.7 (0.77)

'Spanish 84.1(0.85) 82.7 (0.84) 82.7 (0.83)
Table 4: PROM exact identification + 1 (%) and correlation for
different phonetic annotations supplied to the prosodic feature
extractor.

Given the smal amount of test examples, the differences
between situations (1), (2) and (3) are not significant (except for
French PROM). As arule, the prosodic labeling improves as the
phonetic annotation gets better. When comparing the automatic
annotation with the manual one for situation (3), we can see that
on average 3% of the manual phone boundaries is omitted, 5%
of the automatic boundaries is inserted between 2 manual
boundaries, 13% of the automatic boundaries differs by more
than 20 ms from the corresponding manual boundary, and 7% of
the automatic phone labels differs from the manua ones (see
[8]). Our acoustic features turn out to be rather robust against
these errors. Perhaps the boundary deviation error criterion of 20
ms used for evaluating an automatic phonetic annotation is too
sharp. We argue that one should not manually correct the
phonetic annotation prior to the prosodic labeling, but correct
the automatic prosodic labels instead.

Situation (3) was used for obtaining Tables 1 and 2. One may
notice that the labeling results in Tables 1 and 2 (column AC)
are sometimes worse than those mentioned in Tables 3 and 4
(situation 3), even though less training data was available in the
latter experiments. The reasons for this are that (a) the 140
minutes are more complex than the 20 minutes subset, (b) the
feature sets differ dightly, and (c) we did not use cross-
validation for obtaining Tables 3 and 4.

5. CONCLUSION

In this paper, a system that automatically labels prosodic bound-

ary strength and word prominence is described. The system
comprises a feature extractor and a cascade of multi-layer
perceptrons. Boundary strength and word prominence are la-

beled on a gradual scale. Our feature vector not only comprises
acoustic features (pitch, duration and energy), but a whole series

of linguistic cues as well (e.g. part-of-speech labels, word fre-
quency, punctuation, stress,...). We have evaluated our system
on 6 different languages. The labeler achieves approximately the
same performance for each of the languages. By comparing the
prosodic models extracted from the automatic and the manual
labels respectively, it will be possible to evaluate the validity of
our automatic labeling strategy.
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