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ABSTRACT
This paper proposes a modified parameter mapping
scheme for parallel model combination (PMC) method.
The modification aims to improve the discriminative
capabilities of the compensated models. It is achieved by
the rearrangement of the distributions of state models in
order to emphasize the contribution of the mean in the
following process. Both distributions of speech model and
noise model are shaped in cepstral domain through a
covariance contracting procedure. After the compensation
steps, an expanding procedure of the adapted covariance
is necessary to release the emphasis. Using this process,
the discriminative capability is increased so that the
recognition accuracy is improved. In this paper, the
recognition of Chinese names demonstrates the
improvement to the original PMC method, especially
when SNR is low.1

1. INTRODUCTION
A different environmental noise, which does not appear in
the training data for reference models, is known as a
critical factor which degrades the recognition accuracy
seriously [1]. Many studies have been conducted to
diminish the effect caused by the additive noise [2][3].
Among the studies, the parallel model combination (PMC)
technique has been successfully developed to adapt the
models trained by clean speech with the reference of
environmental noise [4]. The statistical models of speech
are expressed in cepstrum domain, while the effect of
environmental noise is additive in linear spectral domain.
To incorporate the noise statistics into speech models, a
mapping for model parameters between cepstral domain
and linear spectral domain is necessary. In the literature
[5], a closed-form formulation was derived for the model
transformation based on a log normal assumption.

In this paper, the transformation scheme is modified to
obtain a better discriminative capability for pattern
classification. The modification is done by shaping signal
models; including speech models and noise models. The
statistics models are rearranged in cepstral domain so that
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the vicinity of cepstral means are emphasized in the
mapping. The shaping process is accomplished by
contracting the covariance of a state model in cepstral
domain using a scalar factor. Both covariance matrices of
state models of speech and noise are divided by a same
factor for the contraction. After the models are adapted in
linear spectral domain, they are transformed back into
cepstral domain and the covariance terms are expanded by
the same factor to release the emphasis. The effect
resulted from the procedure can be observed in the
improvement of the discriminative capability of the
adapted models. The improvement is quite significant to
the test condition at low SNR, and is useful to the noisy
speech recognition. This modified PMC method is termed
weighted PMC (W-PMC).

This paper is organized as follows. In section 2, the
original PMC method is briefly reviewed and a
modification in the model mapping is introduced. In
section 3, A discriminative test on selected vowels shows
the effect by the modification. In section 4, a recognition
task of Chinese names under the corruption of additive
noise is conducted to evaluate the W-PMC method.
Finally, a conclusion is given in section 5.

2. WEIGHTED PARALLEL MODEL
COMBINATION
2.1. Review of Parallel Model Combination
Parallel model combination (PMC) method adapts speech
models to the test condition with additive noise as follows.
Assume that the observation function of speech model is
Gaussian, which can be characterized by a mean and a
covariance ] � _µ E EΣ . In this paper, the super script c

means a parameter in cepstral domain and l means that in
log spectral domain. The speech to be recognized is often
represented in cepstral domain, while the noisy speech is
the addition of background noise and the speech in linear
spectral domain. To match the test condition, the model
parameters of clean speech have to be transformed into
linear spectral domain for incorporating the statistics of

background noise ]`�
`
_µ Σ . The transformation can be

divided into two sequential stages. At the first stage, the
model parameters in log spectral domain are derived from
the cepstral domain by the inverse discrete cosine



transform (IDCT, denoted by %−1),
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% %
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where a super script T means a transpose of a matrix. At
the second stage, based on a log normal assumption [5],
the i-th component of the mean vectorµ  and the

covariance in the linear spectral domain can be computed
by

µ µ σK K

N

KK

N= +GZR
 � �2  and σ µ µ σKL K L KL
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 � ?1 .

Assuming that the speech and noise are independent and
additive in linear power spectral domain, the adapted
mean and covariance can be obtained by

∃ `µ µ µK K KI= +  and ∃ `σ σ σKL KL KLI= +2 ,

where factor g is a gain term providing the match of signal
power to test condition. Assuming that the combined
distribution in linear spectral domain is log normal, the
above mapping process can be straightforwardly inverted.
Therefore, the linear domain parameters are transformed
back to the log spectral domain by
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and secondly, back to the cepstral domain by

∃ ∃µ µE N= %  and ∃ ∃Σ ΣE N 6= % % .

2.2 Modified Parameters Mapping Scheme
In the above model adaptation scheme, the model
parameters in linear spectral domain are the consequence
of the mapping from log spectral domain. As the Gaussian
distribution is concerned, the neighborhood of the mean is
the portion with the highest density and that keeps the
most discriminative information from the other
distributions. If a distribution in log spectral domain is
shaped so as to emphasize the vicinity of mean, the
corresponding distribution in linear spectral domain will
account for the change. Using this concept, if the
observation function of model states are properly shaped
in log spectral domain, the combination of parameters in
linear spectral domain will be the consequence that keeps
the dominant information, and the adapted models will be
more efficient to pattern classification. Intuitively, the
emphasis of the mean can be achieved through a
contraction of the covariance. This procedure can be
performed before the mapping of parameters by dividing
the covariance of all signal models in log spectral domain
with a pre-defined factor.

Once the models are adapted, the covariance in log
spectral domain are expanded by multiplying the same
factor for the succeeding pattern classification. The
expanding process is necessary because it keeps the
modified mapping process as an unitary transformation.
On the other hand, the previous emphasis of the mean
destroys the strategy of the training model in the sense of
maximum likelihood, and results in a degradation of the
performance of pattern matching. The expanding process
could be a remedy to the problem. The contract-and-
expand of covariance in log spectral domain also can be
performed in the cepstral domain because of the linearity
of IDCT. The adaptation method with the contract-and-
expand procedure is termed weighted parallel model
combination (W-PMC) method in the study, since the
highlight of the mean can be considered as a weighting
operation to performing original Gaussian integration. The
effect by the W-PMC will be demonstrated in the
following discriminative test and a recognition task.

3. DISCRIMINATIVE TEST
The benefit gained from the covariance contract-and-
expand operation is primarily demonstrated by a
discriminative test of vowels. Five vowels, /a/, /e/, /i/, /o/,
and /u/ were uttered by a male speaker in a quiet
environment. The speech wave forms were digitized in 8
kHz and the mel-cepstrum analysis is applied for each
0.032 second to obtain 12 mel-frequency cepstrum
coefficients (MFCCs) as a feature vector [7]. Assume that
the distribution of feature vector of a vowel is Gaussian
and its model parameters can be obtained by
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where v indicates one of the five vowels, t is the frame
index, and 0X  is the total number of frames of an

observation of v. A confusing model of v, denoted by X ,
is defined for which one is not v but gives the largest
likelihood for an observation of v, i.e.,

X 0
W X

X W W=
≠

CTIOCZ NQI
 
 � � ��Q O Σ .

A discriminative scoring of an observation of v is defined
by the likelihood ratio
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At first, the discriminative scoring is applied to the clean
utterances with respect to the clean speech models.
Resulting scores and correspondent confusing vowels are
tabulated in Table 1.1. The clean speech of five vowels
are artificially added with Gaussian white noise and
babble noise, extracted from NOISEX-92 database, in
SNR 20dB, 10dB, and 0dB to generate the noisy speech.
Corresponding to the test SNR and the noise type, the



model parameters of clean speech are adapted using W-
PMC method parameterized by four contract-and-expand
factors, 1, 2, 5, and 10. The scoring procedures are
applied to the noisy speech with respect to the adapted
models and the results are listed in Table 1.2 and Table
1.3 for both noises. For each case, it is observed that the
average score becomes smaller as the noise power
increasing. This phenomenon may explain the degradation
of noisy speech recognition, that the additive noise blurs
the difference among templates even a compensation
scheme was applied to them. In the case of additive
babble noise, the discriminative scores increase when
incorporating a bigger contract-and-expand factor. The
trend is still kept for the case of white noise in 10dB and
0dB. For the case of white noise in 20db, the scores get
smaller as applying a bigger contract-and-expand factor.
However, the score is still high enough for effective
pattern classification. From the results, it implies that the
modified mapping process of model parameters is more
beneficial for the speech recognition in low SNR.

Table 1: Confusing vowels and their discriminative log
likelihood scores with model adaptation using W-PMC.

Reference Models of Clean Vowels
α /a/ /e/ /i/ /o/ /u/ Average

NA o/772.3 u/404.5 u/721.2 u/286.9 o/43.8 435.7

Table 1.1: Under quiet environment (NA: No model
adaptation in this case)

20dB
α /a/ /e/ /i/ /o/ /u/ Average

1 o/510.6 u/230.1 u/294.2 u/297.9 e/30.3 272.6
2 o/494.8 u/220.3 u/299.0 u/290.4 e/28.24 266.5
5 o/486.5 u/218.1 u/302.3 u/283.3 e/25.9 263.2
10 o/484.0 u/218.4 u/303.5 u/280.1 e/25.2 262.2

10dB
α /a/ /e/ /i/ /o/ /u/ Average

1 o/104.4 u/98.3 u/119.4 u/138.0 e/21.9 96.4
2 o/118.1 u/106.8 u/123.4 u/131.6 e/17.3 99.4
5 o/133.8 u/112.4 u/126.6 u/129.6 e/16.7 103.8
10 o/140.8 u/114.3 u/127.8 u/129.2 e/17.0 105.8

0dB
α /a/ /e/ /i/ /o/ /u/ Average

1 o/38.6 u/35.4 u/48.3 a/42.6 i/6.4 34.2
2 o/43.9 u/40.9 u/55.0 a/43.7 e/10.7 38.8
5 o/45.7 u/45.6 u/59.2 a/44.5 e/11.4 41.3
10 o/46.2 u/47.4 u/60.7 a/44.7 e/12.1 42.2

Table 1.2: Contaminated by Gaussian white noise in
20dB, 10dB, and 0dB. (α , contract-and-expand factor for
W-PMC)

20dB

α /a/ /e/ /i/ /o/ /u/ Average

1 o/555.2 u/285.6 u/138.5 u/138.5 u/111.6 226.6
2 o/582.4 u/299.6 u/146.4 u/122.5 e/43.6 238.9
5 o/591.2 u/304.7 u/153.2 u/131.4 e/44.8 245.1
10 o/593.2 u/306.1 u/155.8 u/134.8 e/45.4 247.1

10dB
α /a/ /e/ /i/ /o/ /u/ Average

1 o/141.5 u/72.2 u/71.0 u/45.9 o/27.6 71.7
2 o/159.8 u/84.0 u/73.4 u/50.3 o/26.6 78.8
5 o/172.9 u/93.3 u/74.9 u/53.8 o/27.1 84.4
10 o/177.6 u/96.9 u/75.5 u/55.1 o/28.4 86.7

0dB
α /a/ /e/ /i/ /o/ /u/ Average

1 o/35.7 u/15.8 u/28.7 u/10.8 o/10.7 20.3
2 o/38.3 u/16.7 u/30.8 u/10.4 o/11.0 21.4
5 u/40.2 u/17.4 u/32.3 u/10.0 o/18.6 23.7
10 u/40.8 u/17.7 u/32.9 u/9.9 o/22.3 24.7

Table 1.3: Contaminated by babble noise in 20dB, 10dB,
and 0dB. (α , contract-and-expand factor for W-PMC)

4. RESULTS ON NOISY SPEECH
RECOGNITION
# %JKPGUG PCOG TGEQIPKVKQP VCUM YCU EQPFWEVGF VQ

GXCNWCVG VJG RGTHQTOCPEG QH WUKPI 9�2/% OGVJQF� 6JG

FCVCDCUG QH %JKPGUG PCOGU YGTG EQNNGEVGF HTQO �� OCNGU

CPF �� HGOCNGU KP C SWKGV GPXKTQPOGPV� 'CEJ URGCMGT

RTQPQWPEGF C PCOG NKUV QPEG� KP YJKEJ QPG NKUV YCU

EQPUKUVGF QH ��� %JKPGUG PCOGU� 6JGTG CTG CDQWV VJTGG QT

HQWT /CPFCTKP U[NNCDNGU HQT GCEJ RKGEG QH PCOG� 6JG

URGGEJ FCVC HTQO �� OCNG CPF � HGOCNG URGCMGTU YGTG

EQNNGEVGF CU VJG VTCKPKPI FCVC 
CDQWV ��� QH VJG FCVCDCUG�

CPF VJG TGOCKPU YGTG VJG VGUV FCVC� 6JG URGGEJ YCXGHQTO

YCU FKIKVK\GF KP � M*\ CPF UGIOGPVGF KPVQ HTCOGU QH

��OU YKVJ ��� QXGTNCR� 5RGGEJ HGCVWTGU YGTG GZVTCEVGF

HTCOG D[ HTCOG HTQO C OGN�HTGSWGPE[ CPCN[UKU WUKPI C

���HKNVGT DCPM� 6JG HGCVWTG XGEVQT EQORTQOKUGF �� OGN�

HTGSWGPE[ EGRUVTWO EQGHHKEKGPVU 
/(%%U�� KPENWFG C

\GTQVJ VGTO TGSWKTGF KP VJG OQFGN CFCRVCVKQP QPN[� CPF

�� FGNVC /(%%U�

+P VJG GZRGTKOGPV� GCEJ /CPFCTKP U[NNCDNG KU TGRTGUGPVGF

D[ C EQPECVGPCVKQP QH EQPVGZV�FGRGPFGPV UWD�YQTF

OQFGNU� 6JGUG UWD�YQTF OQFGNU ECP DG ENCUUKHKGF KPVQ

VYQ ECVGIQTKGU� QPG KU C UGV QH KPKVKCNU YJKEJ KPENWFG VJGKT

VTCPUKVKQP RQTVKQPU CPF VJG QVJGT KU C UGV QH HKPCNU� 6JG

KPKVKCN OQFGN CPF VJG HKPCN OQFGN CTG EQPUKUVGF QH VJTGG

UVCVGU CPF HQWT UVCVGU� TGURGEVKXGN[� 6JG QDUGTXCVKQP

FKUVTKDWVKQP QH GCEJ UVCVG KU C OKZVWTG QH HQWT )CWUUKCP

RTQDCDKNKV[ FGPUKVKGU� (WNN EQXCTKCPEG OCVTKEGU CTG WUGF

KP VJG EQORGPUCVKQP RTQEGUU� YJKNG QPN[ VJG FKCIQPCN

EQORQPGPVU CTG CFQRVGF VQ EQORWVG VJG NKMGNKJQQF UEQTGU

HQT UKORNKEKV[�



6JG PQKU[ URGGEJ KU IGPGTCVGF D[ CTVKHKEKCNN[ CFFKPI VJTGG

V[RGU QH PQKUGU� )CWUUKCP YJKVG� DCDDNG CPF HCEVQT[

PQKUGU� GZVTCEVGF HTQO 01+5':��� FCVCDCUG� VQ VJG

URGGEJ YCXGHQTO KP HKXG 504NU� 6JG PQKUG OQFGN KU

VTCKPGF HTQO VJG PQKUG FCVC QH � UGEQPFU� YJKEJ KU

OQFGNGF D[ QPG UVCVG YKVJ C OKZVWTG QH VYQ )CWUUKCP

FGPUKVKGU� # DCUGNKPG U[UVGO KU VJG QPG YKVJQWV CP[ PQKUG

EQORGPUCVKQP UEJGOG� (QWT EQPVTCEV�CPF�GZRCPF HCEVQTU�

�� �� �� CPF �� CTG GZRGTKOGPVCNN[ CRRNKGF KP 9�2/%

OGVJQF VQ EQORCTG VJGKT GHHGEVU� +P ECUG QH WUKPI � CU VJG

HCEVQT� 9�2/% KU GSWKXCNGPV VQ VJG QTKIKPCN 2/%� +P VJG

GZRGTKOGPVU� QPN[ VJG /(%% RQTVKQP QH URGGEJ OQFGNU

CTG CFCRVGF� NGCXKPI VJG FGNVC RQTVKQP WPEJCPIGF� 6JG

ICKP VGTO I KU UGV VQ � HQT CNN ECUGU YKVJQWV NQUU QH

IGPGTCNKV[� 6JG TGUWNVU KP VGTOU QH TGEQIPKVKQP GTTQT TCVGU

CTG NKUVGF KP 6CDNG �� 6JG KORTQXGOGPV D[ WUKPI 9�2/%

OGVJQF KU QDXKQWU HQT VJG UGNGEVGF CFFKVKXG PQKUGU�

GURGEKCNN[ YJGP 504 KU NQYGT VJCP ��F$� (WTVJGTOQTG�

VJG KPETGCUKPI QH α  tends to decrease VJG GTTQT TCVGU

YJGP VJG 504 KU NQY� *QYGXGT� VJG TGUWNVU CTG PQV

EQPUKUVGPV KP UQOG ECUGU YJGTG VJG 504 KU JKIJ� (QT

GZCORNG� KP VJG ECUG QH ��F$ YJKVG PQKUG� VJG GTTQT TCVG

KPETGCUGU HTQO ���� VQ ���� YJGP EQPVTCEVKPI HCEVQT

EJCPIGU HTQO � VQ ��� 6JG TGUWNVU CTG EQPUKUVGPV YKVJ VJG

FKUETKOKPCVKXG VGUV� YJGTG VJG FKUETKOKPCVKXG UEQTGU CTG

KPETGCUGF CV NQY 504 CPF FGETGCUGF CV JKIJ 504 YJGP

KPEQTRQTCVKPI YKVJ C NCTIGT EQPVTCEV�CPF�GZRCPF HCEVQT�

White 20dB 15dB 10dB 5dB 0dB

No adaptation 7.1 14.4 31.6 61.8 87.5
PMC 6.3 9.3 17.9 37.2 64.8
W-PMC(2) 6.5 9.5 16.6 29.9 55.9
W-PMC(5) 6.6 9.8 16.4 29.6 53.8
W-PMC(10) 6.8 9.9 16.7 29.9 53.4

Babble 20dB 15dB 10dB 5dB 0dB

No adaptation 5.4 9.7 22.4 57.5 87.8
PMC 4.0 5.2 9.1 23.1 58.5
W-PMC(2) 3.8 5.2 8.8 20.1 52.1
W-PMC(5) 3.9 5.1 8.9 19.6 49.6
W-PMC(10) 4.1 5.1 9.2 19.2 50.2

Factory 20dB 15dB 10dB 5dB 0dB

No adaptation 5.2 10.0 25.6 59.0 89.0
PMC 4.5 6.8 11.5 26.8 64.8
W-PMC(2) 4.4 6.6 10.8 22.7 55.8
W-PMC(5) 4.6 6.5 11.2 21.8 53.3
W-PMC(10) 4.4 6.3 11.3 22.2 52.8

Table 2: Chinese names recognition error rate
compensated by PMC and W-PMC(α ) for the
contamination of white, babble, and factory noise,
respectively.

5. CONCLUSION
In this study, we introduce a modified scheme for the
mapping of the model parameters in the parallel model
combination method. Using the modification, a contract-
and-expand procedure of the covariance, the
discriminative capabilities of the adapted models are
improved. The effect will be more significant by assigning
a bigger contract-and-expand factor in low SNR.
Therefore, the proposed method is useful to improve the
recognition accuracy of noisy speech, especially at low
SNR.
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