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ABSTRACT only the index is transmitted over the channel to the receiver.
The channel noise will nduce channel errors in the

Vector quantization is a popular technique in low bit rate Codin%ommunication such that the indéxis changed to index
Fhus, distortions are introduced in the decoding step.

of speech signal. The transmission index of the codevectorﬂ)s . .

. > . ; . istortion due to an imperfect channel can be reduced by
highly sensitive to channel noise. The channel distortion can . . . -

- . . __@assigning suitable indices to codevectors. The number of
be reduced by organizing the codevector indices suitabl ombination of indices to codevectord\issince the number of
Several index assignment algorithms are studied comparative - tors idl. To tesiN! . tis NP-hard probl
Among them, the index allocation algorithm proposed by Wi evectors 1. To testi assignment IS NFE-hard problem.
and Barba is the fastest method but the channel distortion is

e . o . .
worst one. The proposed parallel tabu search algorithm rea e binary switching glgorlthm .(BSA) [2] is proposed to
the best performance of channel distortion. improve the codevector index assignment by Zeger and Gersho.

The main idea of binary switching algorithm is to calculate the
expected distortion due to the single bit error in the index of
1.INTRODUCTION codevectors for every index swapping and swap the index pair
that makes the largest improvement in distortion. Obviously,
Vector quantization (VQ) [1] is a widely used technique for datthe binary switching algorithm is the descent algorithm. It is
compression. The binary indices of the optimally chosedifficult to reach the global optimum and always get trap in the
codevectors are sent to the destination. A vectdecal optimum.
_ 2 P . .
X ={x, ¥, X} consisting ofk samples of information The simulated annealing technique is applied to design the
source in thek-dimensional Euclidean spacR is sent to the codevector indices by Farvardin [3]. An initial temperature is
vector quantizer. Thk-dimensional vector quantizer with the set and the initial state b of the indices for codevectors is chosen
number of codevectors N is defined as follows by using the random. Randomly choose annother state(perturbation
reproduction  alphabet consisting ofN codevectors, of state b) and calculatedD =D(b')-D(b). If dD<0,

C={c G, q}, the partitioned set consisting of subspacefspiace b byb' ; otherwise replace b lywith probability
of thek-dimensional Euclidean spach, S={s, s &},

exp(ﬂ ). If the number of average distortion drops exceeds a
and the mapping function €( T

prescribed number or if too many unsucessful perturbations
QX=G , if Xos (1) occur, then check the termination condition. The procedure will
be terminated if the temperature is below some prescribed
The set<C and the partitioned se§ satisfy freezing temperature or a stable state is reached.

Wu and Barba [4] developed an efficient index allocation

U?‘:ls = K (2) algorithm by using the information of a priori probability of
codevectors which is referred to as IAP in this paper. Potter

and and Chiang [5] adopted a minimax design criterion instead of
the mean squared error for codevector index assignment. The

sNs=oif i#] @) worst case performance is greatly improved which maintains

good average performance by applying the minimax design

] . ) criterion.  Channel optimized vector quantization was also

The output of the vector quantizer is the indexf the developed for indices assignment to get promising results [6,7].
codevector C; which satisfies Both the codebook generation and the codevector indices
assignment are optimized together by iterative algorithm in the

) ok channel-optimized vector quantizer which is different from the
i=argmin, 3 &' -Cl ¥ (4) .
P g p separated optimization approaches.

Genetic algorithms [8,16-18] are adaptive methods which can



be used in the search and optimization problems. In genetieighbour set ofb(c;). If the channel bit error probability

algorithms, a set of solutions to a problem is callegs assymed to be sufficiently smaling <<1), then the error
chromosomes. A chromosome (string of solution) is Compos%qobability due to more than one bit error can be ignored and
h

of genes. Usually, the individual of the whole populationy,e it grror probability of the channel model can be expressed
contains only one chromosome. The performance of the

solution is called fitness. The fitness of chromosomes are
evaluated and ordered, then new chromosomes are produced by

using the selected candidates as parents and applying mutation J e H(b(G), h(g))=1
and crossover operations.  The new set of chromosomes is tH¢;)/ i ¢)) = 1- s, H(b(g),(g))=0 )
evaluated and ordered again. This cycle continues until a E 0, H(b(g), b(g))>1

suitable solution is found. Data parallelism can be easily

applied to genetic algorithms by dividing the population into

several groups and running the same algorithm for each grou

the same time using different processors which is called paral

genetic algorithm (PGA). The purpose of applying parallep(b(cl)* HG),..

processors to genetic algorithms is more than just a hardware

accelerator. Rather a distributed formulation is developed whicﬁ _ NN

gives better solutions with less computation. In order to reach ~ gljél"(“i)"( Hg)/ Ke)de o) (®)

this function, the communication among these groups is

executed for some fixed generations, i.e., the parallel genetic

algorithm periodically selects promising individuals from each =gy P(g) >3 d(¢. 6), 9)

subpopulation and migrates them to different subpopulations. =1 j:H (b(c ). b(c; ))=1

With the migration (communication), each subpopulation will

receive some new and promising chromosomes to replace $1®j the ensemble average distortion is

worst chromosomes in this subpopulation.  This helps to avoid

premature convergence. The parallel genetic algorithm was N

applied to improve the codevector indices assignment by Pan &-:WZ P(G) 5 > 46, 6) (10)

al. [9,10]. The chromosome is composed of the string of the /=t al biH(b(G).b(c;)=1

codevector indices. Several population groups are generated

randomly. The individuals in each group are evaluated. Then _ em N N

the selection, crossover and mutation schemes are applied to_N__lglp(Q)jéld(o" ¢)- a1

each group separately. For some fixed generations, some

promising |nd|V|duaI_s in each group are migrated to .th?n this paper, the tabu search approach [11-14] is paralleled and

neighbor groups. This procedure guarantees a better optimum . . . ) o

will be reached easily from the experiments. appllgd to the codeyector index aSS{gnment. Binary swnchmg
algorithm (BSA), simulated annealing (SA), parallel genetic

algorithm (PGA), IAP and parallel tabu search (PTAB)

approach are comparatively studied in this paper. The main

codevector indices with am bit string b(c;) , whereN =2™.  contribution of this paper is to distribute the work of cdevector

index assignment to several processors by using the tabu search

. . approach so as not only to accelerate the computation time but
codevector C; and the distortion between codevect®y and  zjso to reduce the channel distortion.

ed on this channel model, the average distortion caused by
fe channel noise for a given assignment of indices,
., (& )), can be expressed as

Assume thatN codevectors C;, i=1,2,...N, are assigned

Let P(g) and d(c,c;) denote the probability of sending

Cj i, j=1,2,...N. A memoryless binary symmetric channel
with bit error probability € is simulated in this paper. For a 2.TABU SEARCH APPROACH

random  assignment of the codevector indices
b=(bg),Ks),...Hg)), the average distortion for any The tabu search approach was proposed by Glover [11]. The

. . L . ic idea of the tabu search is to explore the search space of all
possible bit errors caused by the channel noise is derived as [eéjsible solutions by a sequence of moves. The spirit of this

m method is embedded in its short-term memory process. The

D, = 1-(1-¢) EP(Q)E A5 g) (5) elements of the move from the current solution to its selected
N-1 5 i= neighbor are partially or completely recorded in the tabu list for

the purpose of forbidding the reversal of the replacement in a

The objective performance for the transmission of indicedumber of future iterations.  The search will cycle between the
b(c ) ,i=1,2,...N, can be written as first encountered local minimum and its neighbor without this

assurance.
D= gp(ci)g £ (1_5)”‘—1 Z d(g, G) (6) The tabu search scheme starts with test solutions generated
i=1 i=1 b(c; )ON' (K ¢)) randomly and evaluated the objective function for these

solutions. If the best of these solutions is not tabu or if it is
| _ B ) tabu, but satisfies the aspiration criterion, then select this
where N'(b(G))={§ q) U] HK¢), bg)=1, is thelth g5 ution to be the new current solution to generate test solutions



for next iteration. The process is terminated if the predeflnagtep 3 Sortv%u Vt "

. ,\4”5 in an increasing order. From
objective value or the number of iterations have been reached. ’

It is called aspiration criterion if the test solution is a tabu the best test solution to the worst test solution, if the
solution but the objective value is better than the best value of test solution is a non-tabu solution or it is a tabu
all iterations. solution but the objective value is better than the best
value of all iterations (aspiration level), then choose
this test solution as the current best solution and go to
3.PAPRLLEL TABU SEARCH step 4; otherwise, try the next test solution. If all test
ALGORITHM solutions are tabu solutions, then go to step 2.

Let Sy, Scu and s, be the test, current and best solutionsStep 4. Set the best test solution of jthegroup to theqgth
groups to substitute the one test solution in each
receiving group randomly for everRR iterations.

Here, gq= jD2i , j70,1,...G-1 and i=0,1,...m1.

and V;,, Vvcyu and vy, denote the corresponding test values,

best values of current iteration and best value of all iterations
for the uth group, respectively. Set the number of groups is

and G=o" S =1 §w §u gu‘“‘ m s the bit number for the index.
» :{iu(])' évu(a,___, Sti,u(N)}r 1<i<Ng, Step5. Setg, =gy and v, =Ve,. Insert the swapped
2 N indices of the current best solution to the tabu list.
u :{v{u, Viu ,...,Vt’us}, Set the inserting point of the tabu list=1t +1. If
Su{%d) &u@)vxu(N)}) and s, ={5 (D (2 t,>T,, sett; =1. If i<l,, seti=i+1 and go to
venSpu(N)}, for the uth group, whereNg is the number of step 2; otherwise, record the best codevector index

test solutions antll is the number of codevector indices. The assignment and terminate the program.

initial test solutions are generated randomly. After the first

iteration, the test solutions are generated from the best solutiot. EXPERIMENTS AND CONCLUSIONS

of current iteration as shown in step 2 of the following

algorithm. The tabu list memory only store the swappinghe test material for these experiments is Gauss-Markov source
indices. It is a tabu condition if the swapped indices twhich is of the form:

generate the test solution from the best solution of current

iteration is the same as any record in the tabu list memory,, =ay,1 + W, (12)

The size of the tabu list memory B8xNg. The aspiration

level is also applied in this algorithm. The algorithm iswhere w, is a zero-mean, unit variance, Gaussian white noise

described as follows: process, witha =05. Applying LBG algorithm [15], 7500
L . vectors with 8 dimensions are used to generate 32 and 64
Step 1. Setthe tabu list siz& , number of test solutionNs  oqevectors. The single bit error for each codevector index is
and the maximum number of iterationis,,. Set the assumed. Eq. 9 is used for the evaluation of the channel
iteration counteii=1 and the tabu list length, =1. distortion. The ensemble average distortion can be computed by
I . using Eq 11.
Generate Ng initial solutions
Stu :{51,w %u, §‘u} for each group randomly, Experiments were carried out to test the performance of the
Sblnary switching algorithm (BSA), simulated annealing (SA),
) parallel genetic algorithm (PGA), IAP algorithm and the
Viu ={Viy Vo Wy} using Eq. 6 (for multiple bit paraIIeI tabu search algorithm (PTABU) for using in codevector
errors) or Eq. 9 (for single bit error) and select théndex assignment for 32 and 64 codevectors. The parameter
values setting for SA and PGA are the same as in papers [3] and
[9]. For the parallel tabu search approach, the parameter
for the nth group, 1s1<Ns. Sets,, =5, and values used for the tabu list sizB,, the number of groups G,

Vpu = Ve u- the number of test solutiondlg, the number of iterations for
communicationR and the maximum number of iteratioris,
Step 2. Given the current best assignmep,, generate two are 20, 4, 100, 20 and 500, respectively. Table 1 and Table 2
random integersr, and r, for each test solution, show the mean squared error of the PTABU, PGA, BSA. SA,

: IAP and the ensemble average distortion with 0.01 bit error
lsn <N, .15 2 <N, r#rp, Nis the number of probability for 10 runs for 32 and 64 codevectors.

codevector indices. Generate the test solutions by

swapping s;y(n) and s;y(rz). Calculate the Eor the limited experiments, the parallel tabu search algorithm
may reach the best results. The performance of the parallel
genetic algorithm is better than the binary switching algorithm

for the 32 codevector indices assignment, but it is opposite for

calculate the corresponding objective value

current best solutions; , = g'yuu, ju =arg min, vtI u

corresponding objective values%u,vfu,...,\)tf'a .



64 codevector indices. The parallel genetic algorithm can be 2.
better than binary switching algorithm for more than 32

codevector by increasing
Especially, both the PGA and PTABU can distribute the 3.

computation to several

computation result.

the number of

generations.

processors so as to speed the

The IAP algorithm is the fastest method.
The operation time for the IAP algorithm is no more than 1 sec, 4.
but the performance of the channel distortion is the worst one.
For considering the running speed and the performance of the
channel distortion, the better performance can be obtained by 5,
using the IAP algorithm firstly, then applying the PTABU

algorithm.
6.
Random 0.701206
SEED | PTABU PGA BSA SA IAP
1 0.341860 0.373131 0.3904112 0.361p24H45358 7.
2 0.347710 0.378316 0.375556 0.364418
3 0.342562 0.392741 0.3803%7 0.363p39
4 0.346233 0.357870 0.3916D0 0.352P67 8.
5 0.342963 0.371268 0.3886[{L5 0.344427
6 0.340755% 0.36951i3 0.3630B83 0.347p41
7 0.341422 0.368047 0.363809 0.373f17 9.
8 0.344369 0.379738 0.3996[75 0.360959
9 0.3414671 0.366208 0.4128[73 0.348636
10 0.344491 0.3760249 0.364416 0.352P90 10.
Average| 0.34338B8 0.373288 0.383(034 0.3564782 0.545358

Table 1: Performance comparison of PTABU, PGA, BSA, SA,
IAP and random algorithms for 32 codevectors.

11.
Random 0.903263
SEED | PTABU| PGA BSA SA IAP 12.
1 0.427747 0.537973 0.454205 0.458864655744
2 0.432621 0.523357 0.4691[78 0.459786 13.
3 0.435934 0.530668 0.4476R0 0.461031
4 0.430543 0.519685 0.4356D5 0.477968
5 0.437133 0.527924 0.4573pR0 0.440630 14.
6 0.434815 0.532623 0.446801 0.459827
7 0.432443 0.533488 0.4397P2 0.467991
8 0.429790 0.536568 0.440468 0.455524 15.
9 0.427665% 0.536530 0.4528[13 0.443155
10 [0.429963 0.532848 0.466651 0.459[152
Average| 0.431865 0.531168 0.451047 0.458372 0.655748 16

Table 2: Performance comparison of PTABU, PGA, BSA, SA,

IAP and random algorithms for 64 codevectors.
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