
COMPARISON STUDY ON VQ CODEVECTOR INDEX ASSIGNMENT

J. S. Pan* , C. S. Shieh* and S. C. Chu*, **

 * National Kaohsiung Institute of Technology, Taiwan

 ** University of South Australia, Australia

ABSTRACT

Vector quantization is a popular technique in low bit rate coding
of speech signal. The transmission index of the codevector is
highly sensitive to channel noise. The channel distortion can
be reduced by organizing the codevector indices suitably.
Several index assignment algorithms are studied comparatively.
Among them, the index allocation algorithm proposed by Wu
and Barba is the fastest method but the channel distortion is the
worst one. The proposed parallel tabu search algorithm reach
the best performance of channel distortion.

1. INTRODUCTION

Vector quantization (VQ) [1] is a widely used technique for data
compression. The binary indices of the optimally chosen
codevectors are sent to the destination. A vector

X x x xk= { , , , }1 2
� consisting of k samples of information

source in the k-dimensional Euclidean space Rk is sent to the
vector quantizer. The k-dimensional vector quantizer with the
number of codevectors N is defined as follows by using the
reproduction alphabet consisting of N codevectors,
C c c cN= { , , , }1 2� , the partitioned set consisting of subspaces

of the k-dimensional Euclidean space Rk , S s s sN= { , , , }1 2 � ,

and the mapping function Q(x):

Q x Ci() = , if X Si∈ (1)

The sets C and the partitioned set Si satisfy

� i
N

i
kS R= =1 (2)

and

S Si j� = φ if i j≠ (3)

The output of the vector quantizer is the index i of the
codevector Ci which satisfies

i x Cp
l

p
l

l

k
= −∑

=
arg min ()2

1
 (4)

only the index i is transmitted over the channel to the receiver.
The channel noise will induce channel errors in the
communication such that the index i is changed to index j.
Thus, distortions are introduced in the decoding step.
Distortion due to an imperfect channel can be reduced by
assigning suitable indices to codevectors. The number of
combination of indices to codevectors is N! since the number of
codevectors is N. To test N! assignment is NP-hard problem.

The binary switching algorithm (BSA) [2] is proposed to
improve the codevector index assignment by Zeger and Gersho.
The main idea of binary switching algorithm is to calculate the
expected distortion due to the single bit error in the index of
codevectors for every index swapping and swap the index pair
that makes the largest improvement in distortion. Obviously,
the binary switching algorithm is the descent algorithm. It is
difficult to reach the global optimum and always get trap in the
local optimum.

The simulated annealing technique is applied to design the
codevector indices by Farvardin [3]. An initial temperature is
set and the initial state b of the indices for codevectors is chosen
at random. Randomly choose annother state ′b (perturbation
of state b) and calculate δD D b D b= ′ −() (). If δD < 0 ,

replace b by ′b ; otherwise replace b by′b with probability

exp(
−δD

T
). If the number of average distortion drops exceeds a

prescribed number or if too many unsucessful perturbations
occur, then check the termination condition. The procedure will
be terminated if the temperature is below some prescribed
freezing temperature or a stable state is reached.

Wu and Barba [4] developed an efficient index allocation
algorithm by using the information of a priori probability of
codevectors which is referred to as IAP in this paper. Potter
and Chiang [5] adopted a minimax design criterion instead of
the mean squared error for codevector index assignment. The
worst case performance is greatly improved which maintains
good average performance by applying the minimax design
criterion. Channel optimized vector quantization was also
developed for indices assignment to get promising results [6,7].
Both the codebook generation and the codevector indices
assignment are optimized together by iterative algorithm in the
channel-optimized vector quantizer which is different from the
separated optimization approaches.

Genetic algorithms [8,16-18] are adaptive methods which can

be used in the search and optimization problems. In genetic
algorithms, a set of solutions to a problem is called
chromosomes. A chromosome (string of solution) is composed
of genes. Usually, the individual of the whole population
contains only one chromosome. The performance of the
solution is called fitness. The fitness of chromosomes are
evaluated and ordered, then new chromosomes are produced by
using the selected candidates as parents and applying mutation
and crossover operations. The new set of chromosomes is then
evaluated and ordered again. This cycle continues until a
suitable solution is found. Data parallelism can be easily
applied to genetic algorithms by dividing the population into
several groups and running the same algorithm for each group at
the same time using different processors which is called parallel
genetic algorithm (PGA). The purpose of applying parallel
processors to genetic algorithms is more than just a hardware
accelerator. Rather a distributed formulation is developed which
gives better solutions with less computation. In order to reach
this function, the communication among these groups is
executed for some fixed generations, i.e., the parallel genetic
algorithm periodically selects promising individuals from each
subpopulation and migrates them to different subpopulations.
With the migration (communication), each subpopulation will
receive some new and promising chromosomes to replace the
worst chromosomes in this subpopulation. This helps to avoid
premature convergence. The parallel genetic algorithm was
applied to improve the codevector indices assignment by Pan et.
al. [9,10]. The chromosome is composed of the string of the
codevector indices. Several population groups are generated
randomly. The individuals in each group are evaluated. Then
the selection, crossover and mutation schemes are applied to
each group separately. For some fixed generations, some
promising individuals in each group are migrated to the
neighbor groups. This procedure guarantees a better optimum
will be reached easily from the experiments.

Assume that N codevectors Ci , i=1,2,…,N, are assigned

codevector indices with an m bit string b ci() , where N = 2m .

Let P ci() and d c ci j(,) denote the probability of sending

codevector Ci and the distortion between codevector Ci and

Cj , i, j= 1,2,…,N. A memoryless binary symmetric channel

with bit error probability ε is simulated in this paper. For a
random assignment of the codevector indices
b b c b c b cN= ((), (),..., ()),1 2 the average distortion for any

possible bit errors caused by the channel noise is derived as [10]

D
N

P c d c cc

m

i i j
j

N

i

N
= − −

−
∑∑
==

1 1

1 11

()
() (,)

ε
 (5)

The objective performance for the transmission of indices
b ci() , i=1,2,…,N, can be written as

D P c d c ci
l m

i

m

i

N

i j
b c N b cj

l
i

= −∑∑ ∑−

== ∈
() () (,)

() (())
ε ε1 1

11
 (6)

where N b c b c I H b c b c ll
i j i j(()) { () , ((), ()) }= ∈ = , is the lth

neighbour set of b ci() . If the channel bit error probability ε
is assumed to be sufficiently small (mε << 1), then the error
probability due to more than one bit error can be ignored and
the bit error probability of the channel model can be expressed
as

P b c b c m

H b c b c

H b c b c

H b c b c
j i

i j

i j

i j

(() / ())

,

,

,

((), ())

((), ())

((), ())

= −
=
=
>









ε
ε1

0

1

0

1

 (7)

Based on this channel model, the average distortion caused by
the channel noise for a given assignment of indices,
b b c b c b cN((), (),..., ())1 2 , can be expressed as

D P c P b c b c d c ci j
j

N

i i j
i

N
= ∑∑

==
() (() / ()) (,)

11
 (8)

 = ∑∑
==

ε P c d c ci i j
j H b c b ci

N

i j

() (,)
: ((), ()) 11

, (9)

and the ensemble average distortion is

D
N

P c d c ci i j
j H b c b call bi

N

i j

= ∑∑∑
==

ε
!

() (,)
: ((), ()) 11

(10)

 =
−

∑∑
==

εm

N
P c d c ci i j

j

N

i

N

1 11
() (,) . (11)

In this paper, the tabu search approach [11-14] is paralleled and
applied to the codevector index assignment. Binary switching
algorithm (BSA), simulated annealing (SA), parallel genetic
algorithm (PGA), IAP and parallel tabu search (PTAB)
approach are comparatively studied in this paper. The main
contribution of this paper is to distribute the work of cdevector
index assignment to several processors by using the tabu search
approach so as not only to accelerate the computation time but
also to reduce the channel distortion.

2.TABU SEARCH APPROACH

The tabu search approach was proposed by Glover [11]. The
basic idea of the tabu search is to explore the search space of all
feasible solutions by a sequence of moves. The spirit of this
method is embedded in its short-term memory process. The
elements of the move from the current solution to its selected
neighbor are partially or completely recorded in the tabu list for
the purpose of forbidding the reversal of the replacement in a
number of future iterations. The search will cycle between the
first encountered local minimum and its neighbor without this
assurance.

The tabu search scheme starts with test solutions generated
randomly and evaluated the objective function for these
solutions. If the best of these solutions is not tabu or if it is
tabu, but satisfies the aspiration criterion, then select this
solution to be the new current solution to generate test solutions

for next iteration. The process is terminated if the predefined
objective value or the number of iterations have been reached.
It is called aspiration criterion if the test solution is a tabu
solution but the objective value is better than the best value of
all iterations.

3. PAPRLLEL TABU SEARCH
ALGORITHM

Let St u, , sc u, and sb u, be the test, current and best solutions

and Vt u, , vc u, and vb u, denote the corresponding test values,

best values of current iteration and best value of all iterations
for the uth group, respectively. Set the number of groups is G

and G n= 2 . S s s st u t u t u t u
Ns

, , , ,{ , , ..., }= 1 2 ,

s s st u
i

t u
i

t u
i

, , ,{ (), (),...,= 1 2 s Nt u
i
, ()}, 1≤ ≤i N s ,

V v vt u t u t u, , ,{ ,= 1 2 ,..., },vt u
Ns ,

s sc u c u, ,{ ()= 1 , (),..., ()},, ,s s Nc u c u2 and s s sb u b u b u, , ,{ (), ()= 1 2

,..., ()},,s Nb u for the uth group, where Ns is the number of

test solutions and N is the number of codevector indices. The
initial test solutions are generated randomly. After the first
iteration, the test solutions are generated from the best solution
of current iteration as shown in step 2 of the following
algorithm. The tabu list memory only store the swapping
indices. It is a tabu condition if the swapped indices to
generate the test solution from the best solution of current
iteration is the same as any record in the tabu list memory.
The size of the tabu list memory is 2× Ns . The aspiration

level is also applied in this algorithm. The algorithm is
described as follows:

Step 1. Set the tabu list size Ts , number of test solutions Ns

and the maximum number of iterations I m. Set the

iteration counter i=1 and the tabu list length tl =1 .

Generate Ns initial solutions

S s s st u t u t u t u
Ns

, , , ,{ , ,..., }= 1 2 for each group randomly,

calculate the corresponding objective values

V v v vt u t u t u t u
Ns

, , , ,{ , , ..., }= 1 2 using Eq. 6 (for multiple bit

errors) or Eq. 9 (for single bit error) and select the

current best solution s sc u t u
ju

, ,= , j vu l t u
l= arg min ,

for the nth group, 1≤ ≤l N s . Set s sb u c u, ,= and

v vb u c u, ,= .

Step 2. Given the current best assignment sc u, , generate two

random integers r1 and r2 for each test solution,

1 1≤ ≤r N , 1 2≤ ≤r N , r r1 2≠ , N is the number of

codevector indices. Generate the test solutions by
swapping s rc u, ()1 and s rc u, ()2 . Calculate the

corresponding objective values v v vt u t u t u
Ns

, , ,, ,...,1 2 .

Step 3. Sort v v vt u t u t u
Ns

, , ,, ,...,1 2 in an increasing order. From

the best test solution to the worst test solution, if the
test solution is a non-tabu solution or it is a tabu
solution but the objective value is better than the best
value of all iterations (aspiration level), then choose
this test solution as the current best solution and go to
step 4; otherwise, try the next test solution. If all test
solutions are tabu solutions, then go to step 2.

Step 4. Set the best test solution of the jth group to the qth
groups to substitute the one test solution in each
receiving group randomly for every R iterations.

Here, q j i= ⊕ 2 , j=0,1,…,G-1 and i=0,1,…,m-1.

m is the bit number for the index.

Step 5. Set s sb u c u, ,= and v vb u c u, ,= . Insert the swapped

indices of the current best solution to the tabu list.
Set the inserting point of the tabu list t tl l= + 1. If

t Tl s> , set tl =1 . If i I m< , set i=i+1 and go to

step 2; otherwise, record the best codevector index
assignment and terminate the program.

4.EXPERIMENTS AND CONCLUSIONS

The test material for these experiments is Gauss-Markov source
which is of the form:

y y wn n n= +−α 1 (12)

where wn is a zero-mean, unit variance, Gaussian white noise

process, with α = 0 5. . Applying LBG algorithm [15], 7500
vectors with 8 dimensions are used to generate 32 and 64
codevectors. The single bit error for each codevector index is
assumed. Eq. 9 is used for the evaluation of the channel
distortion. The ensemble average distortion can be computed by
using Eq 11.

Experiments were carried out to test the performance of the
binary switching algorithm (BSA), simulated annealing (SA),
parallel genetic algorithm (PGA), IAP algorithm and the
parallel tabu search algorithm (PTABU) for using in codevector
index assignment for 32 and 64 codevectors. The parameter
values setting for SA and PGA are the same as in papers [3] and
[9]. For the parallel tabu search approach, the parameter
values used for the tabu list size Ts , the number of groups G,

the number of test solutions Ns , the number of iterations for

communication R and the maximum number of iterations I m

are 20, 4, 100, 20 and 500, respectively. Table 1 and Table 2
show the mean squared error of the PTABU, PGA, BSA. SA,
IAP and the ensemble average distortion with 0.01 bit error
probability for 10 runs for 32 and 64 codevectors.

For the limited experiments, the parallel tabu search algorithm
may reach the best results. The performance of the parallel
genetic algorithm is better than the binary switching algorithm
for the 32 codevector indices assignment, but it is opposite for

64 codevector indices. The parallel genetic algorithm can be
better than binary switching algorithm for more than 32
codevector by increasing the number of generations.
Especially, both the PGA and PTABU can distribute the
computation to several processors so as to speed the
computation result. The IAP algorithm is the fastest method.
The operation time for the IAP algorithm is no more than 1 sec,
but the performance of the channel distortion is the worst one.
For considering the running speed and the performance of the
channel distortion, the better performance can be obtained by
using the IAP algorithm firstly, then applying the PTABU
algorithm.

Random 0.701206
SEED PTABU PGA BSA SA IAP

1 0.341860 0.373131 0.390412 0.361024
2 0.347710 0.378316 0.375556 0.364418
3 0.342562 0.392741 0.380347 0.363039
4 0.346233 0.357870 0.391600 0.352267
5 0.342963 0.371268 0.388615 0.344427
6 0.340755 0.369513 0.363033 0.347041
7 0.341422 0.368067 0.363809 0.373717
8 0.344369 0.379738 0.399675 0.360959
9 0.341467 0.366208 0.412873 0.348636
10 0.344491 0.376029 0.364416 0.352290

0.545358

Average 0.343383 0.373288 0.383034 0.356782 0.545358
Table 1: Performance comparison of PTABU, PGA, BSA, SA,
IAP and random algorithms for 32 codevectors.

Random 0.903263
SEED PTABU PGA BSA SA IAP

1 0.427747 0.537973 0.454295 0.458354
2 0.432621 0.523357 0.469178 0.459786
3 0.435934 0.530668 0.447620 0.461031
4 0.430543 0.519685 0.435605 0.477968
5 0.437133 0.527924 0.457320 0.440630
6 0.434815 0.532623 0.446801 0.459827
7 0.432443 0.533488 0.439722 0.467991
8 0.429790 0.536568 0.440468 0.455524
9 0.427665 0.536530 0.452813 0.443455
10 0.429963 0.532848 0.466651 0.459152

0.655748

Average 0.431865 0.531168 0.451047 0.458372 0.655748
Table 2: Performance comparison of PTABU, PGA, BSA, SA,
IAP and random algorithms for 64 codevectors.

5.ACKNOWLEDGEMENT

The authors would like to acknowledge the financial support for
this work by the National Science Council of R.O.C.. This
material is part of the work under the Grant No. 87-2213-E-
151-007.

6.REFERENCES

1. Gray, R. M. “Vector Quantization,” IEEE ASSP
Magazine, 4-28, 1984.

2. Zeger, K. and Gersho, A., “Pseudo-Gray Coding,” IEEE
Trans. on Communications, Vol. 38, No. 12, 2147-2158,
1990.

3. Farvardin, N., “A Study of Vector Quantization for
Noisy Channels,” IEEE Trans. on Information Theory,
Vol. 36, No. 4, 799-809, 1990.

4. Wu, H. S. and Barba, J., “Index Allocation in Vector
Quantization for Noisy Channels,” IEE Electronics
Letters, Vol. 29, No. 15, 1317-1319, 1993.

5. Potter, L. C. and Chiang D. M., “Minimax
Nonredundant Channel Coding,” IEEE Trans. on
Communications, Vol. 43, No. (2/3/4), 804-811, 1995.

6. Farvardin, N. and Vaishampayan, V., “On the
Performance and Complexity of Channel-Optimized
Vector Quantizers,” IEEE Trans. on Information Theory,
Vol. 37, No. 1, 155-160, 1990.

7. Kumazawa, H., Kasahara, M. and Namekawa, T., “A
Construction of Vector Quantizers for Noisy Channels,”
Electronics and Engineering in Japan, 39-47, 1984.

8. Goldberg, D. E., Genetic Algorithm in Search,
Optimization and Machine Learning , Addison-Wesley
Publishing Company, 1989.

9. Pan, J. S., McInnes, F. R. and Jack, M. A., “Application
of Parallel Genetic Algorithm and Property of Multiple
Global Optima to VQ Codevector Index Assignment,”
IEE Electronics Letters, Vol. 32, No. 4, 296-297, 1996.

10. Pan, J. S., McInnes, F. R. and Jack, M. A., “VQ
Codevector Index Assignment Using Genetic Algorithms
for Noisy Channels," Proc, of The Fourth International
Conference on Spoken Language Processing, 295-298,
1996.

11. Glover, F., “Tabu Search, Part�,” ORSA Journal on
Computing, Vol. 1, No. 3, 190-206, 1989.

12. Glover, F., “Tabu Search, Part�,” ORSA Journal on
Computing, Vol. 2, No. 1, 4-31, 1990.

13. Skorin-Kapov, J., “Tabu Search Applied to The
Quadratic Assignment Problem”, ORSA J. Computing,
Vol. 2, No. 1, 33-45, 1990.

14. Glover, F., “Artificial Intelligence, Heuristic
Frameworks and Tabu Search,” Managerial And
Decision Economics, Vol. 11, 365-375, 1990.

15. Linde, Y., Buzo, A. and Gray, R. M., “An Algorithm for
Vector Quantizer Design,” IEEE Trans. on
Communication, Vol. 28, No. 1, 84-95, 1980.

16. Davis, L., Handbook of Genetic Algorithms, Van
Nostrand Reinhold, 1991.

17. Cohoon, J. P., Hegde, S. U., Martine, W. N. and
Richards, D., “Punctuated Equilibria: A Parallel Genetic
Algorithm,” Proceedings of the Second International
Conference on Genetic Algorithms, 148-154, 1987.

18. Pan, J. S., McInnes, F. R. and Jack, M. A., “VQ
Codebook Design Using Genetic Algorithms,” IEE
Electronics Letters, Vol. 31, No. 17, 1418-1419, 1995.

