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ABSTRACT

Humans have an excellent ability to select a particu-

lar sound source from a noisy environment, called the

\Cocktail-Party E�ect" and to compensate for physically

missing sound, called the \Illusion of Continuity." This pa-

per proposes a spectral peak tracker as a model of the illu-

sion of continuity (or phonemic restoration) and a spectral

sequence prediction method using a spectral peak tracker.

Although some models have already been proposed, they

treat only spectral peak frequencies and often generate

wrong predicted spectra. We introduce a peak represen-

tation of log-spectrum with four parameters: amplitude,

frequency, bandwidth, and asymmetry, using the spectral

shape analysis method described by the wavelet transfor-

mation. And we devise a time-varying second-order sys-

tem for formulating the trajectories of the parameters. We

demonstrate that the model can estimate and track the

parameters for connected vowels whose transition section

has been partially replaced by white noise.

1. INTRODUCTION

Although recent speech recognition systems give high

recognition rates for clean speech, their speech recognition

accuracy is reduced in adverse environments. Humans, on

the other hand, can communicate with each other even

in the presence of many speakers or a lot of surrounding

noise. This is because they can have an excellent ability

to select a particular sound source from a noisy environ-

ment, called the \Cocktail-Party E�ect" and to compen-

sate for physically missing sound, called the \Illusion of

Continuity"[1][2]. If we could model these abilities, the

models would be able to extract clean speech from noisy

speech or predict inaudible speech. This clean speech could

then be accurately recognized by recent systems, so such

models could improve the performance of automatic speech

recognition.

This paper proposes a spectral peak tracker as a model

of the illusion of continuity (or phonemic restoration) and

a spectral sequence prediction method using the spectral

peak tracker.

Although some models have already been proposed, such

as spectral peak frequency trajectory extrapolation using

second-order systems[3] and spectrum sequence estimation

using the IFIS [4], those models treat only spectral peak

frequencies or often generate wrong predicted spectra.

To overcome these drawbacks, we introduce a peak repre-

sentation of the log-spectrum with four parameters: am-

plitude, frequency, bandwidth, and asymmetry, using the

spectral shape analysis method described by the wavelet

transformation[5] as a model of the primary auditory cor-

tex. And a time-varying second-order system is devised to

formulate the trajectories of the parameters.

To evaluate the model, synthesized connected vowels with

the transition section partially replaced by white noise,

which causes the illusion of continuity, were provided and

processed by the model. The results show that the mod-

el can estimate and track the four parameters even in

noisy sections and can compensate for the connected vow-

el spectrum sequences. Additionally, since this model uses

a second-order system, it can overshoot reduced-spectrum

sequences caused by coarticulation, by determining appro-

priate second-order system features.

2. SPECTRAL SEQUENCE
PREDICTION MODEL

The spectral sequence prediction model proposed in this

paper is illustrated in Fig. 1. This model consists of spec-

tral analysis, spectrum representation like that in the pri-

mary auditory cortex(A1), spectrum peak extraction, spec-

trum peak prediction, and spectrum reconstruction.

2.1. Spectral Analysis

Input sound waves are transformed into log-cepstrum se-

quences. To compensate for the bias in the estimated cep-

strum, an unbiased cepstrum estimation[6] is used.

Figure 2 shows an example of the estimated log-power spec-

trum sequence of the Japanese vowel /a/ with sampling fre-

quency of 20 kHz and cepstrum order of 60. The estimated

spectrum sequence has little turbulence and stable spec-

tral peaks. The frequency axis shows ERB-rate[7], which

is said to have a good correspondence in the physiology of

auditory peripherals and psychology.

ERB-rate = 21:4 log10(4:37f [kHz]+ 1) (1)
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Figure 1: Spectral sequence prediction model.

2.2. Representation Model of Spectrum
in Primary Auditory Cortex

As a function of the primary auditory cortex(A1), Wang

and Shamma[5] focused on the spectral pattern analysis

along three independent dimensions: a logarithmic fre-

quency axis, a local symmetry axis, and a local spectral

bandwidth axis, and they described them using a wavelet

transformation. In this paper, following their approach, we

adopt the Gabor function as a wavelet, which is given by
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Here, �c is the center angular frequency, and the logarith-

mic frequency is represented by ERB-rate. Let r(s; f; t) be

the A1 spectrum representation at time t; it is calculated

through wavelet transformation of the input log-spectrum

sequence p(!; t) as follows:
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where f , s, and argfr(s; f; t)g represent logarithmic an-

gular frequency, local spectral bandwidth, and local sym-

metry, respectively, and  � means the complex conjugate

of  . The absolute value jr(s; f; t)j means the amplitude

of the A1 spectrum representation on the above three axes.
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Figure 2: Log-spectrum sequence of vowel /a/ by unbiased

estimation.

2.3. Extraction of Spectral Peaks

The amplitude of the A1 spectrum representation has max-

imal values jr(s0; f0; t)j at any time t. This means that

there exists a strong resonance of frequency f0 with band-

width s0. Here, we call them A1 spectral peaks and extract

them.

Since many spectral peaks generally appear at once, it is

not easy to extract them accurately without any unex-

pected loss. So �rstly for the smoothed spectrum p0(!; t)

from cepstrum order of 50, maximal points larger than its

autoregression line are searched for as initial candidates of

maximal points in A1, i.e. ffigi=1;2;.... Finally, maximal

values of jr(s; f; t)j are searched for in A1 around fi to

extract spectral peak.

The extracted spectral peaks at every time t are repre-

sented by four parameters: peak frequency f0(t), band-

width s0(t), symmetry argfr(s0; f0; t)g, and amplitude

jr(s0; f0; t)j. They are considered to be spectral peaks

considering the A1 characteristics.

2.4. Tracking and Extrapolation of
Spectral Peaks

If spectral peak predictors are introduced for time se-

quences of the extracted spectral peaks, they should be

able to simulate illusions of temporal continuity. The pre-

dictors are required to track spectral peaks in non-noise

sections and to extrapolate spectral peaks while keeping

the velocity in noise sections.

In this paper, second-order systems are introduced for pre-

dicting and tracking four parameters of spectral peaks.

ai(1� w)y00i;j(t) + fbi(1� w) + ciwgy0i;j(t) + yi;j(t)

= (1 � w)xi;j(t) (i = 1; 2; 3; 4) (4)



The system outputs a predicted value yi;j(t) of xi;j(t),

which is the j-th spectral peak of the i parameter. Here,

i = 1 for frequency, i = 2 for phase, i = 3 for amplitude,

and i = 4 for bandwidth. The value of w is set to w = 0

in noise-free sections and w = 1 in noise sections, so the

system varies its characteristics depending on whether or

not there is noise. The presence of noise is automatically

detected by checking whether the frame-wise e�ective pow-

er becomes much bigger than that in the previous frame.

Conversely, if the e�ective power is su�ciently smaller than

that in the previous frame, the noise is recognized as having

disappeared.

2.4.1. Tracking of Peaks

In a noise-free section, the prediction and tracking system

behaves as a second-order system. Assuming that, for a

constant value input, the system should output the same

constant value, we make a second-order discrete time sys-

tem for the continuous time system as follows:

yi;j[n] = Gixi;j [n�1]��iyi;j [n�1]��iyi;j [n�2];(5)

where Gi =
2

2ai+bi
, �i =

2(1�2ai)

2ai+bi
, �i =

2ai�bi
2ai+bi

.

2.4.2. Extrapolation of Peaks

It is known that the last tone of an upward/downward

sweep tone with successive white noise is perceived high-

er/lower than its true frequency. This suggests that the

spectral peaks in a noise section should be extrapolated

holding the aspect that existed just before the noise was

entered. Thus we used the following system:

yi;j[n] = yi;j [n � 1] + (yi;j [n� 1]� yi;j [n � 2]);

(i = 1; 2) (6)

for the frequency f and phase argfr(s; f; t)g to be extrap-
olated while keeping the velocity.

Since spectral peaks tend to blur as the duration of the

noise section becomes longer, it seems that the amplitude

should decrease and the bandwidth should become wider.

Thus we used the following system:

y3;j[n] =
c3

c3 + 1
y3;j [n� 1]; (7)

for amplitude extrapolation. Additionally, interpreting the

above relationship between bandwidth and amplitude as

meaning that the product of them should be constant, we

extrapolate the bandwidth as

y4;j[n] =
c4 + 1

c4
y4;j [n� 1]; c4 = c3: (8)

2.4.3. Tracking and Extrapolation of
Peaks

For the spectral peak prediction system, the choice of its

input is an important issue because many spectral peaks
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Figure 3: Reconstructed spectrum (solid line: reconstruc-

tion, dashed line: original).

exist at once. In this paper, the input parameter xi;j [n�1]

is taken from the nearest peak to the previous prediction

in the frequency axis.

It is noticeable that this choice provides a chance of inter-

change between two closer peaks.

2.5. Reconstruction of Spectrum

The log-power spectrum is reconstructed using only spec-

tral peaks in A1 spectrum representation. It is calculated

by the sum of the responses of predicted spectral peak-

s r̂(s0; f0; t)�(
!�f0
s0

) and the mean of p(!; t) over !. It

corresponds to the inverse wavelet transform. Figure 3

shows an example of the reconstruction of a single sweep

tone at a moment.

3. SIMULATION OF TRACKING
AND EXTRAPOLATION OF

SPEECH SPECTRUM

A connected vowel (/a/ connected to /i/) was synthesized

with a formant synthesizer. Its formants F1 to F3 were 800,

1200, and 2500 Hz in /a/ and 250, 2500, and 3000 Hz in

/i/ with bandwidths 80, 120, and 150 Hz, respectively. The

sampling frequency and F0 were 20 kHz and a constant 140

Hz, respectively. The transition section of /a/ and /i/ was

100 ms with linear transition in ERB-rate. The latter half

of the transition section was replaced by enough large white

noise, as shown in Fig. 4. The input log-power spectrum

sequence was obtained by unbiased cepstrum estimation

with order of 60, frame length of 25.6 ms and frame shift 6.4

ms, which is shown in Fig. 5. The prediction and tracking

system was tuned using the parameters ai, bi, and ci in

eq.(4) so as to have the characteristic frequency of 20 Hz,
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Figure 4: Synthesized connected vowel /a/-/i/ with tran-

sient replaced by noise.
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Figure 5: Input spectrum sequence of vowel in Fig. 4.

damping factor of 1, and ci = 0:0064 in the noise-free

section. Figure 6 demonstrates the prediction and tracking

result. It is observed that the section replaced by noise was

recovered well by the prediction and tracking.

Some auditory phenomenon[8] are simulated by the mod-

el, for example, the bouncing e�ect in crossing two sweep

tones as an e�ect of spectral peak tracking (CD track No.

17) and the illusion of continuity as an e�ect of spectral

peak extrapolation (CD track No. 29). In addition, re-

duced spectrum sequences caused by coarticulation may

be recovered by overshooting the spectral peak.

4. CONCLUSIONS

Spectral peaks were represented by four parameters of the

A1 spectral representation followingWang and Shamma[5].

A spectral peak prediction and tracking system having

some perceptual knowledge was introduced. This system

was able to predict and track the spectral peaks from

sounds that included bursts of noise. Although it is hard
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Figure 6: Reconstructed spectrum for input in Fig. 5.

to simply apply the results to speech recognition system-

s, the modeling of phonemic restoration will contribute to

systems in the future.
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