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ABSTRACT

This paper presents a new technique for modelling het-

erogeneous data sources such as speech signals received via

distinctly di�erent channels which arises when an automatic

speech recognition is deployed in wireless telephony in which

highly heterogenous channels coexist and interoperate. The

key problem is that a simple model may become inadequate

to describe accurately the diversity of the signal, result-

ing in an unsatisfactory recognition performance. To cope

up with this problem, di�erent hybrid modelling techniques

have been proposed and investigated in this paper by intel-

ligently combining models from two di�erent wireline and

wireless environments.

1. INTRODUCTION

A speech signal transmitted through a telephone channel

often encounters variable conditions which signi�cantly de-

teriorate the performance of state-of-the-art HMM-based

speech recognition systems [8, 9]. Channel interference and

ambient noise are usually the chief contributors to the sig-

nal distortion [6, 14]. If no a priori knowledge is provided

concerning the nature of the distortion that exists in the

network, then acoustic mismatch between the training and

the testing conditions would cause a performance degra-

dation that is proportional to the degree of the mismatch

[11, 12, 13]. This paper presents a new technique for mod-

elling heterogeneous data sources such as speech signals re-

ceived via distinctly di�erent channels which arises when an

automatic speech recognition is deployed in wireless tele-

phony in which highly heterogenous channels coexist and

interoperate.

When speech recognizers are deployed in telephone ser-

vices, they often encounter variable transmission and back-

ground noise conditions, which signi�cantly deteriorate

their performance level [14]. To account for the variability

due to transmission and noise, we consider multi level cep-

stral mean subtraction (CMS) techniques [11, 15]. CMS is

a standard channel compensation techniques which can re-

move the time-invariant parts of channel distortion [3]. The

e�ectiveness of CMS is severely limited when the environ-

ment can't be adequately modelled by a linear channel [12].

In order to process the non-linear channel, the two level

CMS method (2L-CMS) is proposed, where separate chan-

nel compensation is performed for segments that are clas-

si�ed as speech and for segments classi�ed as background,

and further the system performance depends on the signal

classi�cation accuracy [4]. In this paper, we consider the

2L-CMS technique to compensate for the changes in means

of the parameters at the feature level. These solutions allow

a noticeable recognition error reduction [8].

2. HYBRID MODEL ARCHITECTURES

Di�erent homogenous and heterogenous models were built

with same number of Gaussian mixtures as follows. Note

that the total number of Gaussian mixtures per model

structure is approximately 7072, so that the system com-

plexity remains the same irrespective of model architec-

tures.

� Wireline: A separate wireline models were created us-

ing wireline data alone.

� Wireless: A separate wireless models were trained us-

ing wireless data alone.

� Hybrid-I: Wireline and wireless models were built sep-

arately and combined together with the same model

complexity as in Wireline and Wireless models. The

decoder picks up either wireline or wireless models

throughout the decoding path depending upon the ini-

tial silence classsi�cation as shown in Table 1. That

is, if the initial silence is classi�ed as wireless silence

then the decoder picks up the wireless models alone

and if the initial silence is classi�ed as wireline then

the wireline models alone are used for decoding pur-

poses. We also call this model as homogenous model,

since the decoder path depends upon the initial silence



Sequences Viterbi Segmentation

Digit String sil !44 !sil !9Z2 !sil !4213 !sil

Model Path l ! ll ! l ! lll ! l ! llll ! l

Digit String sil !Z2 !sil ! 593 !sil ! O341 !sil

Model Path w !ww !w !www !w !wwww !w

Table 1. Illustration of Viterbi segmentation using hybrid-I

network architecture: `l' indicates the wireline models, `w'

represents the wireless models and `sil' is the corresponding

silence.

Sequences Viterbi Segmentation

Digit String sil !9O1 !sil !761 !sil !8718 !sil

Model Path l !lww ! w !llw ! l !lwwl ! l

Digit String sil !34 !sil !Z22 !sil !3829 !sil

Model Path l ! ll ! l ! lll ! l ! llll ! l

Digit String sil ! 81 !sil ! 187 !sil ! 8743 !sil

Model Path w !ww !w !www !w !wwww !w

Table 2. Illustration of Viterbi segmentation using hybrid-II

network architecture: `l' indicates the wireline models, `w'

represents the wireless models and `sil' is the corresponding

silence.

or background classi�cation.

� Hybrid-II: Same as previous model structure but the

decoder picks up the best model (either wireline or

wireless) for a given utterence from an unknown chan-

nel as illustrated in Table 2. We call this model het-

erogenous model, since each model has two di�erent

pronunciation or variability.

� Hybrid-III: A hybrid model was built by using both

wireless and wireline training data.

3. FEATURE EXTRACTION

The speech input is sampled at 8kHz and preemphasized us-

ing a �rst-order �lter with a coe�cient of 0.95. The samples

are blocked into overlapping frames of 30 msec in duration,

where the overlap is set to 20 msec. Each frame is win-

dowed with a Hamming window and then processed using

a 10th-order LPC analyzer. The LPC coe�cients are then

converted to cepstral coe�cients, where only the �rst 12

coe�cients are retained. The basic recognizer feature set

consists of 36 features that includes the 12 liftered cepstral

coe�cients and their �rst and second order derivatives [2].

Besides the cepstral based features, the normalized energy

and its �rst and second order time derivatives are also com-

puted. Thus, each speech frame becomes represented by

a vector of 39 features. Note that the computation of all
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Figure 1. Typical energy measurement contours for the utter-

ance \O182". The top plot show s the original speech energy

and the bottom plot shows the speech classi�cation.

the higher order coe�cients is performed over a segment

of �ve frames. Since the signal has been recorded under

various telephone conditions and with di�erent transducer

equipment, each cepstral vector was further processed using

the two-level cepstral mean subtraction (2L-CMS) method

in order to reduce the e�ect of channel distortion [4]. The

2L-CMS technique is implemented in several steps:

� Determine the maximum frame energy Emax and min-

imum frame energy Emin for every utterence.

� Separating the frames of current utterance into two

classes: if Et < � � Emax + (1 � �)Emin, then the

frame t belongs to class-I (silence class), else to class-

II (speech class), where � is a constant determined by

experiment.

� The background and the speech cepstral mean vectors

are calculated for the whole uttereance.

� Finally the normalized cepstral features for each frame

are computed by subtracting them by their respective

cepstral means.

The above procedure is applied in both training and recog-

nition [2]. To illustrate the nature of the signal classi�-

cation, Figure 1 shows the actual frame energy trajectory

and the corresponding speech index for the connected digit

\O182" spoken by a male speaker. It is observed that the

2L-CMS provides better speech and silence classi�cation

and further enhances the system performance.



4. SPEECH DATABASE

This section describes the database, LSS CD, used in this

study. This database is a good challenge for speech rec-

ognizers because of its diversity. It is a compilation of

databases collected during several independent data col-

lection e�orts, �eld trials, and live service deployments.

These independent databases are denoted as DB1 through

DB6. The LSS CD database contains the English digits

one through nine, zero and oh. It ranges in scope from

one where talkers read prepared lists of digit strings to

one where the customers actually use an recognition sys-

tem to access information about their credit card accounts.

The data were collected over wireline network channels us-

ing a variety of telephone handsets. Digit string lengths

range from 1 to 16 digits. The LSS CD database is divided

into two sets: training and testing. The training set, DB1

through DB3, includes both read and spontaneous digit in-

put from a variety of network channels, microphones and

dialect regions. The testing set is designed to have data

strings from both matched and mismatched environmental

conditions and includes all six databases. All recordings in

the training and testing set are valid digit strings, totaling

7282 and 13114 strings for training and testing, respectively.

Wireless database contains connected digit strings recorded

over analog AMPS and digital cellular channels. The col-

lected wireless data include di�erent channel and noise con-

ditions varying from clean speech to hardly audible speech,

contaminated mainly by environmental car noise. The digit

string length in the wireless database ranges from one to

thirty digits. The LSS CD wireless database used in the

experiments is divided into 15488 strings for training and

9142 strings for testing.

5. HMM RECOGNIZER

Following feature analysis, each feature vector is passed to

the recognizer which models each word in the vocabulary

by a set of left-to-right continuous mixture density HMM

using context-dependent head-body-tail models [10]. Each

word in the vocabulary is divided into a head, a body, and

a tail segment. To model inter-word coarticulation, each

word consists of one body with multiple heads and multiple

tails depending on the preceding and following contexts. In

this paper, we model all possible inter-word coarticulation,

resulting in a total of 276 context-dependent sub-word mod-

els. Both the head and tail models are represented with 3

states, while the body models are represented with 4 states,

each having multiples of 4 mixture components. Silence is

modeled with a single state model having 32 mixture com-

ponents. This con�guration results in a total of 276 mod-

Type of Wireline Data

Model Word Error String Accuracy

Wireline 1.138% 94.14%

Wireless 2.593% 88.67%

Hybrid-I 1.442% 92.78%

Hybrid-II 1.148% 94.11%

Hybrid-III 1.108% 94.49%

Table 3. Word error rate and string accuracy for an unknown-

length grammar-based wireline connected digit recognition

task using the MCE trained wireline, wireless and Hybrid mod-

els.

els, 837 states and approximately 7072 mixture components

for wireline, wireless and hybrid models. Training included

updating all the parameters of the model, namely, means,

variances and mixture gains using ML estimation followed

by six epochs of MSE to further re�ne the estimate of the

parameters [5, 7]. Note that the hybrid-I and hybrid-II

models have the same set of models since the di�erence is

only in the decoding process. But the parameter complexity

of wireline, wireless models used in hybrid-I and hybrid-II

is half of that used in actual wireline and wireless models.

That is the wireline, wireless models used in hybrid-I and

hybrid-II were built with 3536 mixtures respectively, to ac-

count for a grand total of 7072 mixture components. So it

is now easy to compare the performance with same num-

ber of model complexity. The number of competing string

models was set to four and the step length was set to one

during the model training phase. Each training utterance is

signal conditioned by applying 2L-CMS prior to being used

in MSE training. The length of the input digit strings are

assumed to be unknown during both training and testing.

6. RECOGNITION EXPERIMENTS

We have conducted experiments to verify the e�ectiveness

of the proposed hybrid techniques using the continuous

speech database on both wireline and wireless connected

digit recognition performance. The Table 3 and Table

4 present the word error rates and string accuracy for all

the hybrid models. We see that the wireline models behave

better than the wireless models for wireline data and the

wireless models perform better than the wireline models for

wireless data. We can clearly see the mismatch between the

two di�erent environments. The hybrid-III model performs

better than all other models for wireline data and perform

more or less same as in wireless models for wireless data.

Similarly hybrid-II model behaves same as the Hybrid-III

models, but slightly worse than that of the matched model



Type of Wireless Data

Model Word Error String Accuracy

Wireline 3.661% 88.04%

Wireless 1.834% 93.94%

Hybrid-I 1.993% 93.67%

Hybrid-II 1.845% 93.86%

Hybrid-III 1.805% 93.99%

Table 4. Word error rate and string accuracy for an unknown-

length grammar-based wireless connected digit recognition

task using the MCE trained wireline, wireless and Hybrid mod-

els.

performance on matched data. But the Hybrid-I model be-

haves the worst since the initial classi�cation of the silence

may not be the correct way of classifying the environment.

It is observed that the hybrid-III model outperforms other

techniques and exhibits consistent improvements on both

wireline and wireless databases. The major bene�t of using

the hybrid models is that there is no need to know about

the source of the data or prior knowledge about the envi-

ronment.

7. CONCLUSIONS

Di�erent hybrid modelling techniques have been proposed

and investigated in this paper by intelligently combining

models from two di�erent wireline and wireless environ-

ments. The main conclusion is that a single hybrid model is

more than su�cient to cater for both wireless and wireline

environments without performance degradation. It is gen-

erally observed that this kind of hybrid techniques can o�er

an opportunity for more 
exible modelling of speech sig-

nals and more sophisticated training of model parameters

for speech recognition over diverse telephone networks.
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