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ABSTRACT

This paper presents a new technique for modelling het-
erogeneous data sources such as speech signals received via
distinctly different channels which arises when an automatic
speech recognition is deployed in wireless telephony in which
highly heterogenous channels coexist and interoperate. The
key problem is that a simple model may become inadequate
to describe accurately the diversity of the signal, result-
ing in an unsatisfactory recognition performance. To cope
up with this problem, different hybrid modelling techniques
have been proposed and investigated in this paper by intel-
ligently combining models from two different wireline and

wireless environments.

1. INTRODUCTION

A speech signal transmitted through a telephone channel
often encounters variable conditions which significantly de-
teriorate the performance of state-of-the-art HMM-based
speech recognition systems [8, 9]. Channel interference and
ambient noise are usually the chief contributors to the sig-
nal distortion [6, 14]. If no a priori knowledge is provided
concerning the nature of the distortion that exists in the
network, then acoustic mismatch between the training and
the testing conditions would cause a performance degra-
dation that is proportional to the degree of the mismatch
[11, 12, 13]. This paper presents a new technique for mod-
elling heterogeneous data sources such as speech signals re-
ceived via distinctly different channels which arises when an
automatic speech recognition is deployed in wireless tele-
phony in which highly heterogenous channels coexist and
interoperate.

When speech recognizers are deployed in telephone ser-
vices, they often encounter variable transmission and back-
ground mnoise conditions, which significantly deteriorate
their performance level [14]. To account for the variability
due to transmission and noise, we consider multi level cep-
stral mean subtraction (CMS) techniques [11, 15]. CMS is

a standard channel compensation techniques which can re-
move the time-invariant parts of channel distortion [3]. The
effectiveness of CMS is severely limited when the environ-
ment can’t be adequately modelled by a linear channel [12].
In order to process the non-linear channel, the two level
CMS method (2L-CMS) is proposed, where separate chan-
nel compensation is performed for segments that are clas-
sified as speech and for segments classified as background,
and further the system performance depends on the signal
classification accuracy [4]. In this paper, we consider the
2L-CMS technique to compensate for the changes in means
of the parameters at the feature level. These solutions allow

a noticeable recognition error reduction [8].

2. HYBRID MODEL ARCHITECTURES

Different homogenous and heterogenous models were built
with same number of Gaussian mixtures as follows. Note
that the total number of Gaussian mixtures per model
structure is approximately 7072, so that the system com-
plexity remains the same irrespective of model architec-

tures.

o Wireline: A separate wireline models were created us-

ing wireline data alone.

o Wireless: A separate wireless models were trained us-

ing wireless data alone.

o Hybrid-I. Wireline and wireless models were built sep-
arately and combined together with the same model
complexity as in Wireline and Wireless models. The
decoder picks up either wireline or wireless models
throughout the decoding path depending upon the ini-
tial silence classsification as shown in Table 1. That
is, if the initial silence is classified as wireless silence
then the decoder picks up the wireless models alone
and if the initial silence is classified as wireline then
the wireline models alone are used for decoding pur-
poses. We also call this model as homogenous model,

since the decoder path depends upon the initial silence



Sequences Viterbi Segmentation

sil —44 —sil —972 —sil —4213 —sil

Digit String

Model Path | 1 =11 —1— 1l =1 — 1l —1

Digit String | sil =72 —sil — 593 —sil — 0341 —sil

Model Path | w —ww —w —www —w —wWwww —Ww
Table 1. lllustration of Viterbi segmentation using hybrid-I

network architecture: ‘I’ indicates the wireline models, ‘w’

represents the wireless models and ‘sil’ is the corresponding

silence.
Sequences Viterbi Segmentation
Digit String | sil =901 —sil —761 —sil —8718 —sil
Model Path | 1 —=lww — w —llw — 1 —lwwl — 1
Digit String | sil —34 —sil —722 —sil —3829 —sil
Model Path | 1 =11 —1— 1l =1 — 1l —1
Digit String | sil — 81 —sil — 187 —sil — 8743 —sil
Model Path | w —ww —w —www —w —wWwww —Ww
Table 2. lllustration of Viterbi segmentation using hybrid-11

'

network architecture: ‘I’ indicates the wireline models, ‘w
represents the wireless models and ‘sil’ is the corresponding

silence.

or background classification.

o Hybrid-1I: Same as previous model structure but the
decoder picks up the best model (either wireline or
wireless) for a given utterence from an unknown chan-
nel as illustrated in Table 2. We call this model het-
erogenous model, since each model has two different

pronunciation or variability.

o Hybrid-1II: A hybrid model was built by using both

wireless and wireline training data.

3. FEATURE EXTRACTION

The speech input is sampled at 8kHz and preemphasized us-
ing a first-order filter with a coefficient of 0.95. The samples
are blocked into overlapping frames of 30 msec in duration,
where the overlap is set to 20 msec. Each frame is win-
dowed with a Hamming window and then processed using
a 10th-order LPC analyzer. The LPC coefficients are then
converted to cepstral coefficients, where only the first 12
coefficients are retained. The basic recognizer feature set
consists of 36 features that includes the 12 liftered cepstral
coeflicients and their first and second order derivatives [2].
Besides the cepstral based features, the normalized energy
and its first and second order time derivatives are also com-
puted. Thus, each speech frame becomes represented by

a vector of 39 features. Note that the computation of all
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Figure 1. Typical energy measurement contours for the utter-
ance “0182". The top plot show s the original speech energy
and the bottom plot shows the speech classification.

the higher order coefficients is performed over a segment
of five frames. Since the signal has been recorded under
various telephone conditions and with different transducer
equipment, each cepstral vector was further processed using
the two-level cepstral mean subtraction (2L-CMS) method
in order to reduce the effect of channel distortion [4]. The

2L-CMS technique is implemented in several steps:

e Determine the maximum frame energy Eh,q, and min-

imum frame energy FE,.;» for every utterence.

e Separating the frames of current utterance into two
classes: if By < a x Epar + (1 — @) Epin, then the
frame ¢ belongs to class-I (silence class), else to class-
IT (speech class), where « is a constant determined by

experiment.

e The background and the speech cepstral mean vectors

are calculated for the whole uttereance.

e Finally the normalized cepstral features for each frame
are computed by subtracting them by their respective

cepstral means.

The above procedure is applied in both training and recog-
nition [2].

cation, Figure 1 shows the actual frame energy trajectory

To illustrate the nature of the signal classifi-

and the corresponding speech index for the connected digit
“0182” spoken by a male speaker. It is observed that the
2L-CMS provides better speech and silence classification

and further enhances the system performance.



4. SPEECH DATABASE

This section describes the database, LSS_CD, used in this
study. This database is a good challenge for speech rec-
ognizers because of its diversity. It is a compilation of
databases collected during several independent data col-
lection efforts, field trials, and live service deployments.
These independent databases are denoted as DB1 through
DB6. The LSS_CD database contains the English digits
one through nine, zero and oh. It ranges in scope from
one where talkers read prepared lists of digit strings to
one where the customers actually use an recognition sys-
tem to access information about their credit card accounts.
The data were collected over wireline network channels us-
ing a variety of telephone handsets. Digit string lengths
range from 1 to 16 digits. The LSS_CD database is divided
into two sets: training and testing. The training set, DB1
through DB3, includes both read and spontaneous digit in-
put from a variety of network channels, microphones and
dialect regions. The testing set is designed to have data
strings from both matched and mismatched environmental
conditions and includes all six databases. All recordings in
the training and testing set are valid digit strings, totaling
7282 and 13114 strings for training and testing, respectively.
Wireless database contains connected digit strings recorded
over analog AMPS and digital cellular channels. The col-
lected wireless data include different channel and noise con-
ditions varying from clean speech to hardly audible speech,
contaminated mainly by environmental car noise. The digit
string length in the wireless database ranges from one to
thirty digits. The LSS_CD wireless database used in the
experiments is divided into 15488 strings for training and

9142 strings for testing.

5. HMM RECOGNIZER

Following feature analysis, each feature vector is passed to
the recognizer which models each word in the vocabulary
by a set of left-to-right continuous mixture density HMM
using context-dependent head-body-tail models [10]. Each
word in the vocabulary is divided into a head, a body, and
a tail segment. To model inter-word coarticulation, each
word consists of one body with multiple heads and multiple
tails depending on the preceding and following contexts. In
this paper, we model all possible inter-word coarticulation,
resulting in a total of 276 context-dependent sub-word mod-
els. Both the head and tail models are represented with 3
states, while the body models are represented with 4 states,
each having multiples of 4 mixture components. Silence is
modeled with a single state model having 32 mixture com-

ponents. This configuration results in a total of 276 mod-

Type of Wireline Data
Model Word Error | String Accuracy
Wireline 1.138% 94.14%
Wireless 2.593% 88.67%
Hybrid-T | 1.442% 92.78%
Hybrid-TT | 1.148% 94.11%
Hybrid-I1T | 1.108% 94.49%

Table 3. Word error rate and string accuracy for an unknown-
length grammar-based wireline connected digit recognition
task using the MCE trained wireline, wireless and Hybrid mod-
els.

els, 837 states and approximately 7072 mixture components
for wireline, wireless and hybrid models. Training included
updating all the parameters of the model, namely, means,
variances and mixture gains using ML estimation followed
by six epochs of MSE to further refine the estimate of the
parameters [5, 7]. Note that the hybrid-I and hybrid-IT
models have the same set of models since the difference is
only in the decoding process. But the parameter complexity
of wireline, wireless models used in hybrid-I and hybrid-IIT
is half of that used in actual wireline and wireless models.
That 1s the wireline, wireless models used in hybrid-I and
hybrid-IT were built with 3536 mixtures respectively, to ac-
count for a grand total of 7072 mixture components. So it
is now easy to compare the performance with same num-
ber of model complexity. The number of competing string
models was set to four and the step length was set to one
during the model training phase. Each training utterance is
signal conditioned by applying 2L-CMS prior to being used
in MSE training. The length of the input digit strings are

assumed to be unknown during both training and testing.

6. RECOGNITION EXPERIMENTS

We have conducted experiments to verify the effectiveness
of the proposed hybrid techniques using the continuous
speech database on both wireline and wireless connected
The Table 3 and Table
4 present the word error rates and string accuracy for all
the hybrid models. We see that the wireline models behave

better than the wireless models for wireline data and the

digit recognition performance.

wireless models perform better than the wireline models for
wireless data. We can clearly see the mismatch between the
two different environments. The hybrid-IIT model performs
better than all other models for wireline data and perform
more or less same as in wireless models for wireless data.
Similarly hybrid-II model behaves same as the Hybrid-II1
models, but slightly worse than that of the matched model



Type of Wireless Data
Model Word Error | String Accuracy
Wireline 3.661% 88.04%
Wireless 1.834% 93.94%
Hybrid-I 1.993% 93.67%
Hybrid-TT | 1.845% 93.86%
Hybrid-I1T | 1.805% 93.99%

Table 4. Word error rate and string accuracy for an unknown-
length grammar-based wireless connected digit recognition
task using the MCE trained wireline, wireless and Hybrid mod-
els.

performance on matched data. But the Hybrid-I model be-
haves the worst since the initial classification of the silence
may not be the correct way of classifying the environment.
It is observed that the hybrid-III model outperforms other
techniques and exhibits consistent improvements on both
wireline and wireless databases. The major benefit of using
the hybrid models is that there is no need to know about
the source of the data or prior knowledge about the envi-

ronment.

7. CONCLUSIONS

Different hybrid modelling techniques have been proposed
and investigated in this paper by intelligently combining
models from two different wireline and wireless environ-
ments. The main conclusion is that a single hybrid model is
more than sufficient to cater for both wireless and wireline
environments without performance degradation. It is gen-
erally observed that this kind of hybrid techniques can offer
an opportunity for more flexible modelling of speech sig-
nals and more sophisticated training of model parameters

for speech recognition over diverse telephone networks.
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