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ABSTRACT

A new light is thrown on the Portnoff [1] speech signal time-
scale modification algorithm. It is shown in particular that the
Portnoff algorithm easily accommodates expansion factors
bigger than 2 without causing reverberation nor chorusing.
The modified Portnoff algorithm, which draws on spectral
modification techniques due to Seneff [2], has been tested on
several speech signals. The quality of the synthesized signal is
totally satisfactory even for big expansion factors. The article
gives a brief summary of the Portnoff algorithm and spells out
the modifications introduced. It is shown that the phase
unwrapping procedure constitutes a crucial point of the
algorithm.

1. INTRODUCTION

Time-scale modification techniques are very useful in such
fields as data transmission and assisting persons suffering from
auditory deficiencies. We are convinced that in some cases of
auditory deficiency, slowing down the speech signal can
enhance the understanding of the vocal message. At the
present, the PSOLA algorithm [3] remains the most popular
algorithm for doing so. It is extremely easy to implement. It
however relies crucially on the use of a good pitch detector. It
is all well known that the use of a pitch detector undermines
the perfect functioning of such an algorithm. This fact
constitutes the main drawback of the PSOLA algorithm. This
drawback is however doubly counterbalanced by the excellent
quality of the synthesized signal and the record time in which
it is obtained.

The interest of phase vocoder based algorithms resides in the
absence of preliminary pitch calculations which is a major
advantage. Moreover, the resulting synthesized signal is of
very good quality even for big expansion factors. Such
algorithms on the other hand, require very big computational
power. For instance, the proposed modified Portnoff algorithm
takes as much as 40 minutes to process 2 seconds of speech on
a PC Pentium 166 for a time-scale expansion factor of 4 and
around 20 minutes for the expansion factor of 2. This
computational time involves no interpolation whatsoever of

the DFT coefficient frames as proposed in the original
contribution of Portnoff [1].

2. THE PORTNOFF ALGORITHM

The Portnoff algorithm can be summarized by the formula:

Y ( n , ω ) = A ( β n , ω ) exp [ j ( α ( β n , ω ) + v ( β n , ω ) / β ) ]  (1)

where A ( n , ω )  is the amplitude spectrum of the original
signal, α ( n , ω )   is a term which varies slowly with time and
can be qualified as "phase modulator"; v ( n , ω )  is the
unwrapped phase; β  is the compression or the expansion
factor and Y ( n , ω ) , the spectrum of the synthesized signal.

Figure 1 gives the direct implementation of Eq. (1). It in fact
schematizes the processing of one DFT channel. Three stages
of processing can be distinguished from the figure. The first
analyzes the speech signal. The second performs the
transformation of the DFT coefficients, a stage during which
the time-scale modification is realized. The third stage finally
performs the synthesis in the strict sense of the word.

- The analysis stage preemphasizes  the speech signal

using a filter of the type 1 − ρ z 
− 1 

 . A Hamming window is
next applied to the result of the analysis. The DFT
coefficients are then calculated. A R:1 decimation operator
finally operates on the sequence of DFT frames retaining
one out of every R frames.

- The time-scale modification stage is divided into two
parts in figure 1. The upper part is devoted to handling
cases with expansion factor β < 1  while the lower part

deals with the cases of β > 1 . The case of β < 1 

corresponds to expansion in the strict sense speaking while
β > 1  on the contrary corresponds to compression. In the

original algorithm, Portnoff chose β  as a ratio of two

integers D and I, i.e., β =
D

I
.



SCHEMATIC DIAGRAM OF THE PORTNOFF ALGORITHM
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Fig. 1 - The Portnoff algorithm

Since D and I must be small, the set of the values ofβ  is
quite limited in size. The action of the zero-padding
operator 1:I which inserts I-1 zeroes between two DFT
coefficients belonging to the same frequency channel,
followed by that of the interpolating filter f M ( n )  and the
decimating operator D:1, results in the spectral level time-
scale modification of the signal. The phase is multiplied by
1 / β − 1  instead of 1 / β  in order to avoid that the phase
multiplication affects the phase modulation term.

- The synthesis stage is symmetrical in its action to the
analysis stage as regards the decimation operation in that it
restores all the DFT frames by the 1 :R and f(n) operators.
The signals output by channels are all summed  and de-
emphasized.

Here follows the modifications we introduced into the original
Portnoff algorithm:

1. The phase modulation term is assumed to be zero. This
term is indeed barely visible when visualizing the
unwrapped phases associated with the different DFT
coefficients. S. Seneff [2] also ignored it in her algorithm.

2. The decimation operator R:1 has been suppressed from
the analysis stage for two reason: 1) the duration of the
calculation is not our primary concern; 2) our aim is to
carry out a very accurate sample-to-sample phase
unwrapping.

3. In an algorithm of this type based on phase vocoder
techniques, very great care must taken in performing the
phase unwrapping. In order to calculate the term v ( n , ω ) ,
we implemented a phase unwrapping procedure which
expresses v ( n , ω )  only in terms of v ( n − 1 , ω ) ,
γ ( n − 1 , ω )  and γ ( n , ω )  where γ ( n , ω )  is the
instantaneous phase of the DFT coefficient at the instant n
and frequency ω . The next section will give the explicit
calculation for v ( n , ω ) .

4. As indicated by Portnoff [1] and Seneff [2], jumps of
can occur at any moment, especially when the size of the
DFT coefficient is close to zero. In this last case, the jump
can assume any value with the behavior of the DFT
coefficient becoming chaotic. The phase unwrapping
procedure must take this into account. This is precisely
what our algorithm does by considering a special case for
the evaluation of the unwrapped phase when the
modulus of the DFTcoefficient is below an experimentally
determined threshold.

5. As regards the inevitable interpolation needed in the
Portnoff algorithm to handle the time-scale modification
itself, we replaced the Oetken filters [6] employed in the
original Portnoff algorithm by Lagrange interpolating
filters [5], resorting to a 24 point filter for the expansion
factor 2 and to a 48  point filter for the expansion factor 4.
The Oetken filters were difficult to synthesize.



SCHEMATIC DIAGRAM OF THE PROPOSED ALGORITHM
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Fig. 2 - The proposed algorithm

The interest of Lagrange interpolating filters for this type
of application resides in the facts that they are zero phase
and preserve the support from which the interpolated
points are calculated.

6.Contrary to Portnoff, we did away with the pre-
emphasizing filter of the analysis stage on account of its
non linearity phase response. The use of non linear phase
filter in phase vocoder based applications can be a source
of trouble.

Figure 2 schematically outlines the differences between the
proposed algorithm and the original Portnoff algorithm [1].

3. THE PHASE UNWRAPPING PROCEDURE

Let v ( n , ω )  be the unwrapped phase at the instant n and
frequency k and γ ( n , k )  the corresponding instantaneous

phase between  0 and 2π. The following  cases were
considered:

3.1. 2π jump : rising phase

1. Suppose that γ π ε( , )n k− = −1 2 1 where ε 1 
 is a

small quantity. The phase jump under such a situation is
2 π + ε . What interests us is the quantity ε  which is
given by the equation : 

2 π − ε 1 + 2 π + ε = γ ( n , k ) = ε 2 .

In other words, ε = ε 1 + ε 2 . Hence :

v ( n , k ) = v ( n − 1 , k ) + 2 π − γ n − 1 , k ( ) ( ) + γ n , k ( ) 

2. Suppose γ ( n − 1 , k ) = ε 1 . The phase jump in this case
too is equal to 2 π + ε . ε  is given by the equation:

ε 1 + 2 π + ε = γ ( n , k ) = 2 π − ε 2 

from which one derives: ε ε ε= − −1 2 . Hence :

( ) ( )v n k v n k n k n k( , ) ( , ) [ ][ ] ,= − − − − −1 2 1π γ γ

3.2. π jump : rising phase

1. Supposing γ ( n − 1 , k ) = 2 π − ε 1 . In this case the
phase jumps is equal to π + ε  where ε  is given by the
equation:
2 π − ε 1 + π + ε = γ ( n , k ) = π + ε 2  from which we

deduce ε = ε 1 + ε 2 . Consequently :

v ( n , k ) = v ( n − 1 , k ) + 2 π − γ ( n − 1 , k ) ( ) + γ n , k ( ) − π ( ) 

2.  Supposing γ ( n − 1 , k ) = ε 1 . The phase jump is still
given by π + ε . But this time, ε  is given by the
equation:

ε ε ε1 2+ π + = π +

from which one deduces ε = ε 2 − ε 1  which leads to

v ( n , k ) = v ( n − 1 , k ) − γ ( n − 1 , k ) + γ n , k ( ) − π ( ) .

3.3. Descending phase  jump

v ( n , k )  in this case is given by: v ( n , k ) = − v ( n , N − k ) ,
where N is the number of the DFT coefficients used.

3.4. Chaotic phase jumps

A chaotic phase jump can occur when the modulus of the DFT
coefficient approaches  zero. Figures 3, 4 and 5 illustrate this
phenomenon. To deal with situations like this, we update the



unwrapped phase  at the instant n by taking the previous phase
as the current phase: v ( n , k ) = v ( n − 1 , k )  to avoid the
chaotic phase jump. This constitutes the third modification
introduced into the Portnoff algorithm as previously stated in
section 2 above.

In this case, the DFT coefficient makes a π jump

Fig. 3 - A π jump.

In this case, the DFT coefficient makes a 2π jump

Fig. 4 - A 2π jump.

A chaotic phase jump was observed in the region close to the origin.
The phase unwrapping procedure must take this into account

Fig. 5- A  chaotic jump

4. RESULTS

We were able to slow down several speech signals of both
female and male voices using as expansion factors 2, 3, 4 and
even 5. The results obtained are very satisfactory. The
resulting synthesized sound files were practically devoid of
any reverberation noise. The chorusing effect reported in [4]
was also totally absent from the files even in the cases of big
expansion factors such as 4 and 5. The intelligibility of the
synthesized sound was perfectly maintained as well as the
characteristics of the speaker. Finally, the synthesized sound is
of a very good quality. The interested reader could verify our
assertions by listening to the different synthesized sound files.
The sentence, uttered by a female speaker, is: "The quick fox
jumps over the lazy dog" [sound A0442S01.WAV]. The sound
files [sound A0442S02.WAV] and [sound A0442S03.WAV]
contain the same sentence but slowed down by a factor of 2
(β = 0 . 5 ) for the one, and by 3 β = 0 . 33 for the other. The
proposed modified Portnoff algorithm is also capable of
compressing speech signals. The sound file [sound
A0442S04.WAV] is a compressed version of the original
sentence using a factor of 0.66, i.e.,  β = 1 . 5 .

5. CONCLUSION

This article proposes a modification of the Portnoff
algorithm[1] inspired by the spectral modification techniques
proposed by S. Seneff [2]. The results are very satisfactory
even for big expansion factors. In the not distant future, we
intend comparing our algorithm with PSOLA. The results of
this comparison will form the topic of a future publication.
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