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ABSTRACT

The paper involves the recognition of French audiovi-
sual vowels at various signal-to-noise ratios (SNRs). It
deals with a new non-linear preprocessing of the audio
data which enables an estimation of the reliability of the
audio sensor in relation to SNR, and a significant in-
crease in the recognition performances at the output of
the fusion process.

1. INTRODUCTION

Since several years, a number of  automatic speech re-
cognition systems insert a visual input in their system in
order to enhance speech identification in acoustical
noise [8]. Then the challenge is to obtain the best syner-
gy: the audio-visual recognition rate must be higher than
both audio and visual scores separately as it is for hu-
man subjects. In order to realize this challenge one must
make three important choices. First, various architectu-
res for decision fusion have been proposed [7] and their
performances must be assessed and compared. Second,
the fusion process may incorporate an external variable
(a “context”), possibly linked to the reliability of each
sensor [1]. Third, the representation of the input data
and the nature of the monosensory classifiers may con-
siderably modify the behaviour of the whole system. We
discuss these three points in relation to the audio-visual
(AV) recognition of vowels embedded in acoustical
noise.

2. EXPERIMENTAL CONDITIONS

2.1 Audiovisual data

The corpus consists in 100 repetitions of each of the 10
French oral vowels pronounced in isolation by a single
speaker. The corpus was recorded with a Video-Speech
Workstation [5] which allows us to automatically ex-
tract three basic parameters of the labial contours, name-
ly inner-lip width (A), height (B) and area (S). Noisy
acoustical signals were obtained by adding various
amounts of white gaussian noise, with 8 signal-to-noise

ratios: no noise, 24 dB, 12 dB, 6 dB, 0 dB, -6 dB, -12
dB and -24 dB. The audio coefficients are 20-
dimensional spectral values in a perceptual bark-scale
(see [6,9] for more details).

2.2 Recognition paradigms

The efficiency of the audiovisual system was assessed in
various situations depending on two main factors.

2.2.1 Learning and test corpus

We consider here an "extrapolation" paradigm in which
the learning corpus contains acoustical samples at high
SNR values (no noise, 24 dB, 12 dB, 0 dB) and the
system is then tested with non-learned samples at all
SNR values including the lowest ones. We used ten dif-
ferent partitions to increase the reliability of recognition
scores estimation.

2.2.2 Introduction of a contextual input

The reliability of each sensor plays a crucial role in sen-
sor fusion. We consider in our work the possibility to
directly introduce in the fusion process a control of the
acoustical input linked to the SNR value: this is called
"extrapolation-with-context" paradigm. In the
"extrapolation-without-context" paradigm, we shall dis-
cuss the possibility to infer the reliability of the acousti-
cal input directly from the data: this is called
"extrapolation-with-estimated-context" paradigm.

3. AUDIO-VISUAL FUSION
ARCHITECTURES

In other works, we have defined four possible architec-
tures for sensor fusion [7], and studied their performan-
ces without preprocessing of the acoustical input [9]. In
the present work, where we test the interest of a non-
linear preprocessing, we focus on the most classical ar-
chitecture, the Separate Identification (SI) model. In this
model, the acoustical and optical data are separately
classified, and then a decision-to-decision fusion pro-
cess is applied to estimate the audio-visual score.
For each monomodal classifier, we use the quadratic
discriminant analysis (gaussian classifier), in which for a



given partition we first estimate means mi and the cova-
riance matrices Vi  for each class ωi (with 10 classes),
and then compute the posterior probability P(ωi /x) for a
given input vector x. Let us call PA and PV the probabi-
lities at the output of the Audio and Visual classifier
respectively, and PAV  the probabilities at the output of
the fusion process. When no context is introduced, PAV

is computed thanks to a classical multiplicative process.
However in the "context" paradigm, we introduce
weighting power factors αi  and (1− αi ) selectively rein-
forcing the weight of the audio or visual decisions in the
multiplicative fusion process :
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Finally, the classification is based on the choice of arg-
max [PAV (ωi /x)].

4. NON-LINEAR PREPROCESSING OF
THE AUDIO DATA

A difficulty for audio classification is that in the audito-
ry space, the configurations of the vowel clusters
(including all SNRs) are rather folded. The objective of
the non-linear preprocessing is to simplify the trajecto-
ries of the stimuli when noise increases (trajectory
“unfolding”) in order to facilitate the classification and
the SNR estimation. A 3-D Principal Component Ana-
lysis (PCA; linear preprocessing) performed on the cor-
pus (all SNRs) showed us the complexity of the trajec-
tories produced by the deformation of a vowel spectrum
with increasing noise (Fig. 1a: each symbol represents the
cluster center at different SNR). In the extrapolation condi-
tion, these folded trajectories lead to a poor recognition
rate in audio and audiovisual conditions. Hence we used
an original non-linear projection algorithm, called
Curvilinear Component Analysis (CCA), to attempt to
"unfold" these trajectories. The CCA principle relies on
the idea that two points in the input space xi and xj with
a distance Xij between them must be located in the low-
dimensional output space with a distance Yij as close as
possible to Xij. However, due to the reduction dimen-
sion process, this is not possible for all the range of
distances. Then the cost function to minimize for the
matching between Xij and Yij includes a monotonously
decreasing weighting function F(Yij) such that short-
range distances are favored relative to longer-range
ones. So, it is possible to re-shape a data structure by
unfolding it into an output space of lower dimension.
The basic principle is to constraint the transformation to
reveal the vowels trajectories due to the noise. For this,
the trajectories unfolding is organised in a supervised
manner: acoustic data for each level of noise (called a
"layer of noise") are sequentially organized from the
highest SNR to the lowest SNR so that acoustic data at
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Figure 1 - Representation of the trajectories of the vowel
cluster centers for eight SNRs after a 3-D CCA (a) and a 3-D

PCA (b) projections

the level SNR = Ni are organized from themselves and
from the organization already obtained with the level
SNR = Ni-1. From the point of view of the output di-
mension, we know that each layer can be reasonably
well unfolded into a 2D (vocalic triangular shape)
space. Then if we consider simultaneously two layers,
the dimension of the output space must be increased to-
wards (2+1) dimensionnal space. In order to constraint
this supplementary dimension to capture the basic shape
(triangle) displacement with noise, this dimension is
only added at the beginning of the process when the se-
cond layer (in our case 24 dB) is organized from the
first layer (in our case "no noise"). For the following
layers, the dimension of the output space is not further
increased and remains at (2+1) (see [2, 3] for more de-
tails). Fig. 1b displays the 3D CCA projection of the
audio corpus. We clearly see the unfolding of the trajec-
tories and the vowel space shrinkage (from bottom to
top) due to noise. We shall see in the next section the
potential interest of data unfolding.
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Figure 2 – Extrapolation-without-context recognition for va-
rious frontends (20D, 3D-PCA, 3D-CCA), (a) A classifier (b)

AV classifier; "with SNR" means weighted fusion with the
SNR estimated from the acoustic input

5. RECOGNITION EXPERIMENTS

5.1 Extrapolation-without-context paradigm

We present on Fig. 2a the recognition at the output of
the acoustical classifier: we notice that the 3-D CCA
preprocessing leads to performances slightly lower than
with the complete 20-D inputs, but better than with a li-
near 3-D PCA frontend. On Fig.2b, we notice that the
AV scores with CCA are much better than with both 3-
D PCA and 20-D inputs for small SNRs. The reason is
that with CCA, the trajectories are quite straight, and the
audio classifier provides posterior probabilities not very
contrasted in large amount of noise: hence, in the fusion
process, the audio decisions play a small part. On the
contrary, with PCA or no frontend, the trajectories are
more folded, hence the audio classifier makes errors
with important posterior probabilities, which play a
large role in the fusion with the video classifier. In con-
sequence, the audiovisual rate at SNR = -24 dB
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Figure 3 –Evaluation of the average estimation of α (for the
10 vocalic classes) during the test phases vs the SNR values

increases from 13% without data processing, to 29%
after PCA up to 53% after CCA, not very far from the
video score at 69% (see figure 2.b): some true
“extrapolation” occurs thanks to data unfolding.

5.2 Extrapolation-with-estimated-context pa-
radigm

In order to enhance the system performance we attemp-
ted to estimate the audio reliability in the extrapolation
paradigm (the αi  parameter in Eq.1). We have studied
two methods to evaluate the audio reliability [4]: derive
it from the ambiguity at the output of the acoustical
classifier or from an estimation of SNR by the stimulus
position on the vocalic trajectory. “Ambiguity scores”
are easy to compute but it may happen that ambiguity is
small in a however large level of noise, which makes it a
poor candidate for estimating the audio reliability.
Hence we prefered the second method. With CCA pre-
processing, the SNR estimation can be computed from
the last dimension of the CCA (or 3D dimensions of the
PCA) representation which is highly correlated with
noise thanks to unfolding (see figure 1a). Then, we will
set αi from an estimation of a ratio ζi , called "noise
factor", normalized between 0 and 1 (see Eq. 2). This
factor is linked with the SNR value by equation 3.
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The evalutation of the noise factor is realized by a poly-
nomial regression method (2nd order). To account for
differences in the vowel trajectories with noise, we
consider ten regression modules. This parabolic regres-
sion is sufficient to make an estimation of the noise



factor  
)

ζ i and derive the weighting factor αi  by a simple

matching function with threshold at 0 and saturation at
1. The evaluation of the weighting factor is displayed in
Fig. 3. With PCA we clearly see that the estimation (at
all the SNRs) is imprecise due to the folded trajectories.
Finally, in Fig. 2b, we see that the introduction of a re-
liability factor in the SI model, derived from SNR esti-
mation in CCA, is very efficient for all the SNRs contra-
ry to PCA because of the poor context estimation. In
this recognition paradigm, we have only used the loca-
tion of the cluster along the trajectories to derive a

weighting factor  (
)

ζ i )  for the fusion process. Notice

that this factor directly linked with the SNR can be also
used as an estimate of the SNR for a more general re-
cognition application.

6. CONCLUSION

The global architecture progressively elaborated in this
work is displayed in Fig 4. Altogether, CCA preproces-
sing, SNR estimation and control of the sensor fusion
process by the reliability of the audio sensor enable us
to realize our challenge : the audiovisual recognition
score converges towards the visual recognition score as
the SNR decreases and remains always superior or equal
to both the visual and the audio scores. Our future work
will aim to estimate the context for more complex cor-
pus (dynamic) and noise (coktail party).
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figure 4 - Global architecture with preprocessing of the audio data, context estimation and control of the fusion process


