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ABSTRACT

To improve the robustness of speech recognition in
additive noisy environments, an SVD based space
transformation approach is proposed. It is shown that
with this approach, not only the signal-to-noise ratio is
improved but also a significant recognition error
reduction is achieved. A multiple model based on the
proposed method is developed and it can provide high
recognition rate for a large range of SNRs. Recognition
experiments on a speaker-dependent mono-syllabic
database with additive noise show that, this new
approach outperforms LPC cepstrum, MFCC, and
OSALPC cepstrum significantly.

1 Introduction
The performance degradation of a speech recognition
system operated in noisy environments is due to the
mismatch between training and testing conditions. To
solve the problem, a great deal of interest is in the
developing of robust front end. Spectral subtraction was
first used in speech enhancement to improve the quality
of noisy speech. It was then applied to speech
recognition[1]. Juang and Rabiner [7] proposed a
spectral mapping approach to transform the noisy speech
feature vectors into clean feature vectors. MMSE
estimation was introduced by Ephraim [6] and Erell and
Weitraub [9] obtained a significant increase in
recognition performance for noisy speech. A lot of
literature focus on the development of robust
representations of speech; for instance, auditory based
features [2,3], correlation domain based features [4,5].
Jensen et al. in [8] proposed a speech enhancement
method based on truncated SVD and Quotient SVD
(QSVD). They showed that the truncated SVD and
QSVD were effective to improve the SNR of broad-band
noisy speech. In this paper, we propose a new front-end
preprocessing approach which adopts the Least
Square(LS) estimation based on SVD to transform
speech into a new signal space. We will prove that with
this approach, not only the signal-to-noise ratio is
improved but also a significant recognition error
reduction is achieved. We further apply the processing
on the autocorrelation data matrix to enhance the
recognition performance in even lower SNR conditions.
Finally we propose a multi-model based on this
transformation scheme. Recognition experiments on a
speaker-dependent mono-syllabic database with additive

noise show that, this new approach outperforms LPC
cepstrum, MFCC, and OSALPC cepstrum significantly
for a large range of SNRs.

2 Space transformation based on SVD

2-1 Singular value decomposition on data matrix
Considering a speech contaminated by an additive noise:
X, = +ni , (l)
where X,,S;, and #, are the noisy speech, clean speech,

and noise signal respectively. We can form the following
K x P Hankel data matrices

S:[Sn""SP]’N=[n.,"',nl,],and
X=S+N=[x,.x,]. )
where
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with K>P. For speech signal, it is assumed that

rank(S)=L £ P and rank(N)=rank(X)=P.
The singular value decomposition of X is given by

X=Uzx2V’', (3)
where U, =[u,,,,u,,]is the orthonormal matrix,
V,=[v, Vv, ,] the unitary matrix, u _ € R* and

v,, € R” are respectively the left and right singular

vectors, 2, =diag(o,,, .0, ,) the singular values

x17

of the matrix X. The SVD of X can be rewritten in the
following partition form

=, Oo0]v,/
x=[U, sz]{ 0' ZJ{V“T} (4)

x2
where U € R***,Z e RV"',V e RP".
The SVD of S can also be written as
z
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For ease of discussion, it 1s assumed that the noise is
white and uncorrelated with the clean speech, i.e.

n/n, =A8(j—i),and s'n, =0 (6)
where &(j) is a Kronecker delta function and A* the

energy of noise vector. The relationship of the SVD of X
with regard to N and the SVD of S is given as[§]

U, =[(U,Z, +NV )E, +2D™ ANV, )

s - {(z_fl + A" 0]
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V.t = [V.\l V.\'Z] (9)

2-2 Space transformation as a preprocessing

In [8], Jensen et al constructed a speech enhancement
method from the SVD estimation. However, for speech
recognition, it is not necessarily needed to transform a
noisy speech to approximate the original clean speech.
We should try to alleviate the mismatch between clean
and noisy speech. With this motivation, we formulate the
following preprocessing procedures for speech
recognition, in which both the training clean speech and
the testing noisy speech are transformed into a new
signal space before the feature estimation.

A) Preprocessing of clean training speech
From the SVD of clean speech data matrix in (5), the

least square (LS) estimation of S at rank [ is

N _ sy’
S =02V, (10)
WhereU.ﬁ-ll) =[u, 0,00, ],

0 _
Vi =Van Yo vl

I3l .
Z.(\'l =diag(0,,,,0,,,0,,), ISL.
It is reasonable to restore the “speech” vector from any
column of S, for instance, the first column. Then we
have the preprocessed vector of clean speech

I Dy, unT

T=UYEG VYD (11)
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where v{'" is the first row vector of V! . 1Tt is easy to

see that s contains only partial information of the
original speech due to the reduced rank approximation in
(11). We refer this signal as quasi-speech.

B) Preprocessing of noisy testing speech

The noisy testing speech can be processed in the same
way as the clean speech. By utilizing the equations (3)
through (9), we have an LS estimate from the noisy
speech as

SO =UNEHVYT = (UEY +NVHVOT (12)
The estimated speech vector is derived as
—(/) (U“)Z(I) +NV“)) anT (l) +n (13)
,\I

C) SNR improvement due to the preprocessing
The SNR of the original noisy speech is defined as

Isl® lsl?

E,
SNR =10log,y 7= 7 ” ” 10log,, 197 " ”2 =10log,, > ).2 (14)

where the energy of clean speech is related to singular

, 1 1 &
=sl* ==Isll; == ). o2 . (15)
P F P ; sl

values as E,

Therefore, SNR = 10log , {(1/P- 2. 0% ) /). (16)

In the similar way, the SNR of preprocessed signal, or
noisy quasi-speech, is defined and derived as

BT Zrioohs
”5(”—5(’)"2 - %8 ),ZZII.:,V.\?;.,,!
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SNR" =10log,,

It is easy to see that SNRY™" > SNR" | for 1<I< L.
Considering that the original noisy speech is the special
case of noisy quasi-speech with /=L, we come to the
conclusion that the quasi-speech possesses higher SNR
than the original noisy speech, i.e.

SNR" > SNR® >---> SNR'Y’ = SNR (18)

Fig. 1 depicts the average SNR'” versus [ for the noisy
speech data formed by artificially adding white noise to a
sequence of about 150 second clean Cantonese speech.
The signal-to-noise ratios are 10dB and 5dB in the sense
of SNRMAX measurement, which are 9.714dB and
4.715dB respectively in the measurement of segmental

SNR, or average SNR . For both cases, when /=1,
approximate 10dB improvement of SNR is obtained.
Furthermore, if the quasi-speech is reconstructed by
averaging the anti-diagonal elements of (10) and (12), it
can be shown that SNR is further improved (the proof is
omitted for the sake of brevity) which is evidently
indicated in Fig 1 with the lines labeled by "Hankel".

3 Recognition experiments

3-1 Database

A Cantonese speech database for telephony application
was collected, sampled at 16KHz, and end-points were
manually marked. The vocabulary of the database
contains 10 digits and 4 control words. The speech data
are recorded from 4 female and 4 male speakers. Each
speaker uttered the words 22 times. 12 clean utterances
form the training database and the remaining 10
utterances of the words constitute the testing database
which is added with various levels of white noise to
generate different SNRs ranging from 40dB to 0dB,
where the SNR is measured in the sense of SNRMAX.

3-2 Preprocessing in waveform domain

In this experiment, the preprocessing is accomplished in
the waveform domain. After the training and testing
speech are preprocessed, any feature analysis method,
e.g. LPC, MFCC, can be used to create the feature
parameters. We here use LPC analysis and transform
LPC coefficients into cepstral coefficients and delta
cepstral coefficients. The recognition results are listed in
Table 1. The recognition rates of quasi-speech are
denoted with QLPC. LPC and MFCC analysis without
the preprocessing are also tested on the same database.
The feature vector contains 12D cepstral and 12D delta
cepstral coefficients. All analysis uses 20ms frame
window with 10ms shift. The orders of LPC and QLPC
are both 16. MFCC is analyzed with 40 filters. For each
word a continuous HMM model is trained, which is
composed of 6 states, 3 mixtures, and diagonal Gaussian
probability density. In these experiments, the number of



columns of data matrix for SVD is P=16. The
recognition results show that the performance of QLPC
is significantly better than those of LPC and MFCC

3-3 Preprocessing in autocorrelation domain
Hernando and Nadeu[5] proposed a robust speech
feature OSALPC, which was demonstrated to be more
robust than LPC and MFCC in noisy environments. The
preprocessing  method  proposed in 2-2  can
straightforward be extended to the autocorrelation
domain. We can form a data matrix in autocorrelation
domain as

Y=[r'r,rp]. (19)

where r’ = [r,f,r,i,,-‘-,r,a,fl]r, and r* is the one-sided
autocorrelation sequence. We can carry out the similar
preprocessing described in section 2-2 on this
autocorrelation matrix. The resulting sequence is called
quasi-autocorrelation sequence. After the preprocessing
has been performed, the same feature analysis procedure
as in QLPC can be implemented to result in QOSALPC
parameters. Speech recognition with OSALPC and
QOSALPC are carried out on the same database as
above. The analysis order of OSALPC and QOSALPC
are both 16. The number of column for the SVD
preprocessing is still P=16. The recognition results are
listed in Table 2. The results show that the performance
of QOSALPC is significantly better than that of
OSALPC for SNR below 10dB. It can been seen, from
Table 1 and Table 2, that in the cases of SNR> 20dB,
QLPC gives the best performance, and at the cases of
SNR<20dB, QOSALPC is the best.

4 Multiple model approach

In section 2, we proved that the lower the reconstruction
rank, the higher the SNR of the reconstructed quasi-
speech can be obtained; however the preprocessing may
lose some information when the reconstruction rank is
relatively low. Therefore, to eliminate noise and to retain
as much speech information as possible are conflicted.
There must be a compromise between them. The
experiments in section 3 demonstrate the statements,
where at each noise condition, the best performances of
QLPC and QOSALPC are obtained at a specific rank of
reconstruction and the best rank is / <3. When SNR is
relatively high, the loss of speech information dominates,
so the optimum rank is higher, while SNR is low, the
impact of noise is more important, so the optimum rank
must be lower. Generally speaking, the optimum rank is
SNR dependent. Furthermore, from the experiments in
section 3, it can be seen that there exists a distinct SNR
division, say 20dB, above and below which QLPC and
QOSALPC respectively give the best performances. To
combine the two analysis methods in a unified
framework will yield the best performance over all SNR
conditions. Based on this motivation, we propose a

multiple model approach in this section. The approach is

based on two considerations:

A) For each word, in the training phase, we train
several HMM models using different ranks of quasi-
speech ( rank /<3), and in the recognizing phase,
each testing speech is preprocessed to yield several
observation sequences with different ranks of
reconstruction. The optimum model is selected by
scoring each  observation  sequence  with
corresponding HMM models. This scheme avoids
the determination of optimum rank by exactly
estimating SNR which is not an easy job;

B) In order to obtain the best performance over the
whole SNR range (0-40dB), an SNR threshold
should be determined in order to automatically
select a proper analysis method from QLPC and
QOSALPC in different SNR conditions. This SNR
should be easily obtained based on the SVD and do
not use any a priori knowledge about the noise.

4-1 SNR estimation based on singular values
The 2-norm condition number x,(Y), which is defined

as i, (V) =|Y,|Y7|, =01/, (20)

where o, and o, are the maximum and minimum

singular values of matrix Y. In the case of noisy speech
Y =S+N, x,(Y)will decrease with the increase of

noise level. Therefor, the 2-norm condition number of a
noisy speech matrix is a good measurement of SNR.
Based on this property, we can explicitly defined an
estimated SNR based on SVD as

10 &
SNR;y;, :72]0&0 K, (Y,), (21)
r=1

where T denotes the length of a word, i.e., the average is
over the whole word. Experiments, on the training
database with various levels of noises, show that the
distribution of segmental SNR and the distribution of
SNR,,,, are very similar, especially under the

conditions of SNR<25dB. Recalling that there is a SNR
division at 20dB between QLPC and QOSALPC, then a
threshold can be easily determined with the SNR,,

TH gy, = max{SNRy,,,, SNRy,;, € x(SNR = 20dB)} .
In our experiments, TH,, =194dB.

4-2 Multiple model recognition experiment

The recognition experiment with the multiple
model is carried out as follows. In the training phase,
eight HMM models are trained using clean speech for
each word. Four models are trained by deploying full
rank and rank 1, 2 and 3 QLPC parameters and the other
four are trained by deploying full rank and rank 1,2, and
3 QOSALPC parameters. During the testing phase,
SNR,, is firstly estimated. Then, with the guidance of

the SNR;,, , the speech is transformed and analyzed with
either QLPC or QOSALPC method and is scored with



corresponding HMM models. The final recognition
results are listed in Table 3.

5 Conclusion and discussion

A new preprocessing approach for robust
speech recognition is proposed. Multiple model
approach is shown to provide very good results. It 1s
worthwhile to mention that even with rank one
preprocessing, the recognition performance is acceptable
in some extent. The computational complexity can be
significantly reduced by calculating only the largest
singular value and its corresponding vectors and make
the robust method well suitable for low cost
implementation.
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Table 1 Recognition rates of LPC, MFCC, and QLPC
under various SNRs ( P=16).

SNR(dB)

rank | clean 40 T 35 [ 30 | 25 | 20 [ 15

LPC
100 | 8357 [ 62.86 | 37.14 | 27.86 | 2071 [ 15.00

MFCC
100 [97.14 [ 7857 [ 57.14 [ 43.57 | 34.29 | 2357

QLPC
1 [ 9786 [ 97.86 ] 97.86 | 97.86 [ 97.86 | 94.29 [ 50.00
2 [ 985719857 | 100 | 99.29 [ 9500 [ 77.86 | 3831
3 [9786 [ 100 [ 99.29 [ 90.71 [ 67.86 | 32.86 [ 29.22
4 9786 { 9857 | 97.86 | 88.57 | 57.86 | 35.00 | 20.97
5 | 9714 1 97.14 [ 9429 [ 77.14 [ 3857 | 26.43 [ 19.73
6 | 9714 [ 9643 | 92.86 | 7000 | 37.86 | 27.14 [ 1648
8 [99.28 [ 9571 | 87.86 | 51.43 | 31.43 | 20.00 | 15.00
10 100 [ 93.57 T 8071 [ 39.29 | 27.86 [ 20.00 [ 15.00
16 100 [ 83.57 [ 62.86 | 37.14 | 27.86 | 20.71 | 15.00

Table 2 Recognition rates of OSALPC and
QOSALPC under various SNRs (P=16).

SNR(dB)
rank [ clean 14025120 |15 |10 |5 [0
OSALPC
9214 [ 92.14 [ 92.14 [ 91.42 [ 85.00 [ 40.71 | 14.29
QOSALPC

87.14 | 87.86 | 87.86 | 87.86 | 87.86 | 87.14 | 69.29

89.29 | 90.00 | 90.71 | 90.71 | 87.86 | 82.86 | 60

94.29 | 94.29 | 94.29 | 92.86 | 90.71 | 77.86 | 48.57

92.14 | 92.14 | 92.86 | 92.14 | 87.14 | 60.00 | 17.14

92.86 | 92.86 | 92.14 | 9286 | 85.00 I 43.57 | 14.29

9143 19143 19143 | 92.14 | 87.14 | 4500 | 14.29

90.00 | 90.00 | 90.71 | 92.14 | 87.14 | 4643 | 14.29

— =l ||| —

0 90.71 | 90.71 | 90.71 | 92.14 | 87.14 |} 42.14 | 14.29
6 92.14 | 92.14 | 92.14 | 91.42 | 85.00 | 40.71 | 1429

Table 3 Recognition accuracy rates of the multiple
model approach.

clean 40dB 35dB 30dB 25Db

100 100 100 99.29 97.86

20dB 15dB 10dB 5dB 0dB

94.29 92.86 90.71 87.14 69.29

—o— 10dB(Quasi-speech)
-—+— 10dB(Quasi-speech,Hankel)

25
( —a—5dB(Quasi-speech)
20 + —x — 5dB(Quasi-speech,Hankel)
O+ — ... 10dB(Original-sppech)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Rank |

Figure 1. Average SNR versus [ at the conditions of
global SNR of 5dB and 10dB, which correspond to

average SNR of 4.715dB and 9.714dB respectively.




