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In this paper we study the influence of the sub-band
adaptive filtering speech enhancement method on speech
recognition systems in multi-source noisy environment
using a speaker and a noise reference microphone.

In extensive experiments, the recognition score of a
speaker independent isolated word speech recognition
system based on a continuous density HMM (CDHMM)
has been measured in the presence of real life noises in
various SNRs. In all experiments the results show
improvement in the mean recognition score when the sub-
band adaptive filtering LMS method is used in
comparison to the full-band LMS method. This
improvement increases when changing types of noise
distort the speech signal.
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Multi-channel adaptive filtering is a very efficient method
for speech enhancement, giving almost optimal
performance even though the clean signal and the noise
signal differ significantly from channel to channel and the
spectral characteristics of both signals are unknown a
priori [1]. The more input channels are available
containing correlated signal components, the better the
system performance is. On the other hand the speech
recognition rate in noisy environment is increased by
using multiple (up to four in practice) microphones [6]. In
case where only two sensors are used, the multi-channel
adaptive filtering techniques can be simulated by
decomposing the input and the reference signal in the
frequency domain (in the way the human ear does) using
critical-band filters [4].

Recently, it has being shown that applying the well
known LMS algorithm on the same band signals, faster
convergence and more effective noise suppression can be
achieved [2,5,7].

This paper compares the recognition score of a speaker
independent isolated word recognition system in a multi-
source noisy environment, when the critical-band LMS
adaptive filtering (SB-LMS) method is used for speech

enhancement with the recognition score achieved by
using the full band LMS (FB-LMS) algorithm (fig. 1).

Figure 1. The multi-channel speech recognition system.

The experimental results show that the recognition rate is
significantly better (up to 20%) in the first case when the
SNR of the training recordings differs from that of the
testing data or different types of noise were added to the
testing recordings. The SB-LMS and the critical band
features extraction method in conjunction with HMM
parameter adaptation techniques can be used to
implement speech recognition systems having acceptable
recognition rates in a wide range of SNR and type of
noises.
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The noisy signals are decomposed in band-limited signals,
non-linearly distributed in the frequency domain. The
LMS algorithm is applied to each band to suppress the
noise components. Specifically the speaker and the noise
reference signals are sampled at 16 kHz, preemphasized,
and decomposed in critical rectangular bands (the first 20
bands from [4], page 142) with the use of the 32 ms FFT,
computed every 5ms. Fifty coefficients of linear FIR
filters are estimated by the adaptive LMS algorithm for
each critical band separately. The feature vector consists
of the normalized log-energy of the critical-band with
respect to the total frame log-energy.
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The experiments were carried out on a speaker
independent isolated word recognition system, which is
based on a whole-word CDHMM [3]. Each word model is
a five states left to right CDHMM with no state skip. The
output distribution probabilities are modeled by means of
a Gaussian component with diagonal covariance matrix.

The segmental k-means training algorithm is used to
estimate the HMM parameters from multiple feature
vectors. In particular, in all experiments the maximum
number of the word models was set to 1.

Figure 2.  Recognition score (%) for the SB-LMS method versus
the SNR of the testing (horizontal axis) and the training set
(curves) for F16 and Car noise.

Figure 3.  Recognition score (%) for the FB-LMS method versus
the SNR of the testing and the training set for F16 and Car noise.

The speech database used included 15 command words
and the digits of the Greek language recorded by 107
speakers in a semi-anechoic chamber. The recordings of
35 randomly selected speakers composed the training set

(840 recordings) and the remaining set of 1710 recordings
were used as testing set. In the recognition experiments,
we used manually determined word boundaries.

4. EXPERIMENTS AND RESULTS

Three types of colored noise (taken from the NOISEX92
database) were added to the speech signal at 15, 10, 5, 0, -
5, -10 dB: noise recordings under various driving
conditions (Car), factory noise in a car production hall
near to a plate-cutting and electrical welding equipment
(Factory) and a cokpit noise under various flight
conditions of a F16 fighter (F16). In addition we added
two sine signals of 400 and 900 Hz respectively to the
speech recordings in order to study the overall system
performance in narrow band noise (Sine).

 The noisy signals were created by simulation.
Specifically, the speaker microphone was positioned in
5m distance from the reference noise microphone. In
three experiments, different noise sources were
distributed in the neighboring space in the same plane and
in various distances from the microphones: (a) F16 and
Car, (b) F16, Car and Factory, (c) F16, Sine, Car, Factory
(fig. 1). Fig. 2 to 9 presents the experimental results.

Figure 4.  Recognition score (%) for the SB-LMS method versus
the SNR of the testing and the training set for F16, Car and
Factory noises�

The SB-LMS gives substantial better results in case where
the SNR of the testing set differs from that used in the
training set as shown in fig. 2 and fig. 3. The most
impressive result was reached when noisy speech data at
10 dB SNR were used to train the system and the
recognition rate was measured in testing data at -10dB
SNR. The FB-LMS gave 11.81% while the SB-LMS
improved this score to 40.99%. In general this
improvement decreases when the SNR of the training
recordings also decreases, as measured by the mean
recognition score of the experiments carried out in
different testing data SNR (table 1.).
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Table 1
Mean recognition score for different training SNR

Training SNR (dB) 15 10 5 0 -5 -10
Sub - band (%) 76 80 82 78 66 56
Full - band (%) 64 70 76 76 66 49

Figure 5.  Recognition score (%) for the FB-LMS method versus
the SNR of the testing and the training set for F16, Car and
Factory noise.

Figure 6.  Recognition score (%) for the SB-LMS method versus
the SNR of the testing and the training set for F16, Car, Factory
and sine noise.

Table 1 gives the mean recognition rate for the
experiments with the F16 and Car types of noise shown in
figures 2 and 3. In all cases the SB-LMS method gives a
better score, maximizing the difference from the FB-LMS
method when the "clean " (high SNR) or "very noisy"
speech data (-10dB) is used to train the system.

In fig. 4 and 5 the recognition rate is shown when
additional narrow band and strongly non-stationary noise

(factory) is used to distort the speech signal. The
recognition rate decreases insignificantly in the SB-LMS
method in testing data of high SNR. On the contrary, in
low SNR testing data the recognition rate decreases
approximately 20% (fig. 2 and 4). In the case of the FB-
LMS experiments (fig. 3 and 5) the recognition rate
decreases more uniformly, both in low and high SNR.

In the last set of experiments additional very narrow band
stationary noise was added to the speech. Two clean sine
signals of 100 and 900 Hz respectively were added to the
noisy speech. This type of noise has minor influence on
the recognition rate using the SB-LMS method (fig. 4 and
6 are almost identical; maximum difference of 5%).
Similar phenomena were measured for the FB-LMS
method (fig. 5 and 7).

Figure 7.  Recognition score (%) for the FB-LMS method versus
the SNR of the testing and the training set for F16, Car, Factory
and sine noise.

The influence of changing types of noise to the
recognition score has been studied in two experiments. In
the first experiment the speech data and all types of noises
were used to train the system; noise from F16 and Car
were added to testing data (fig. 8). In the second
experiment (fig. 9) the role of the training and the testing
data was reversed. The results show that in high SNR
testing data the recognition score is greater in the case
where the system is trained using all the types of noise
sources. The recognition rate drops from 80% (training
data of clean speech and all types of noise at -5dB, fig. 8)
to 12% (training data of clean speech and F16 plus Car
noise at -5dB, fig. 9) for the SB-LMS method. This
phenomenon is reversed when the noise of the testing data
increases. As shown in fig. 9 the best performance is
achieved for the SB-LMS when the recognition system is
trained using more or less clean speech data (F16 and Car
noise at +10dB). The recognition rate remains high, in the
range 85-94% for all testing SNR, while it decreases
dramatically in the case that training includes all types of
noise (fig. 8).
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Figure 8.  Recognition score (%) for the SB-LMS and FB-LMS
method versus various SNR ratios of the testing data; F16 and
Car noise distort the testing data at 10 and -5 dB SNR.

Figure 9.  Recognition score (%) for the SB-LMS and FB-LMS
method versus various SNR ratios of the testing data; F16, Car,
Factory, sine noise distort the testing data at 10 and -5 dB SNR.
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Extensive experiments have shown that the critical-band
multi-channel adaptive filtering method using FIR linear
filters can be employed to improve the score of isolated

word recognition systems. The most important results can
be summarized as follows:

a. In case the recognition system is operating in a wide
area of SNR (+15,-10dB) it is better to use training
data at 5dB SNR, giving a mean error rate of 82%
(table 1).

b. If the recognition system is operating in a specific
noise environment and in a restricted area of SNR,
the most effective training data are the speech noisy
data at the same SNR and type of noise.

c. The SB-LMS method gives better recognition rates
than the FB-LMS in almost all the cases. This
improvement is maximized when stationary narrow
band noise distorts the speech signal. Though in non-
stationary narrow band noise the SB-LMS method is
less efficient, it remains better than the FB-LMS.

d. In case the recognition system is operating in various
noisy environments (changing types of noise) it is
better to train the system using high SNR speech data
containing the most frequent types of noise. In the
recognition phase the SB-LMS can be used
efficiently to minimize the influence of the unknown
types of noise.
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