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ABSTRACT

We describe the development of an R&D recognizer
for several Spanish applications, starting from an exist-
ing recognition system for American English and modest
language-specific resources. The experiments emphasize
achieving phonetic accuracy on telephone speech without
vocabulary specific training. We use our basic recogni-
tion engine, and simple grammar-building tools for pre-
dicting word sequences. Only the read sentences from two
telephone speech corpora (Voice Across Hispanic Amer-
ica (VAHA) and a smaller T1I corpus) are used for train-
ing. Word error rates (WER) of 1.9% on telephone service
command phrases, 5.5% on telephone numbers, and 12%
on continuously spoken sentences are achieved with the
newly ported system.

1. INTRODUCTION

Given the high cost of speech data collection, it is impor-
tant that vocabulary-independent, speaker-independent
recognition systems be developed for use in a variety of
task vocabularies, reducing or eliminating the need to col-
lect data for new task domains. This is especially true for
telephone speech, and for languages such as Spanish, in
which there are few public speech corpora available.

Recent work on vocabulary-independent Spanish speech
recognition includes Torres and Casacuberta, [1], Varona
et al [2] and Bonafonte et al [3], who experiment with
building effective subword-size phonetic units to cope with
context variation. These studies begin with relatively
small training corpora of microphone quality (16 kHz)
Castilian speech from as few as 10 speakers. They report
good phonetic recognition results for test sentences of the
same type as training. For telephone quality speech, Vil-
larrubia et ol [4] report results on vocabulary-independent
recognition of Castilian surnames with monophone, bi-
phone and triphone models, using telephone speech from
the VESTEL corpus [5].

In this paper, we describe experiments in vocabulary-
independent, speaker-independent recognition of Ameri-
can Spanish telephone speech. Using only read sentences,
i.e., domain-independent speech, we build and train Span-
ish acoustic models for recognition of two application vo-
cabularies, telephone service command phrases and con-
nected telephone digit strings. as well as for test sen-
tences from the training domain. We use only phoneme-

size units, but test various subtypes of phonetic models,
including mixtures and clustered triphones.

2. SPEECH DATA

In American Spanish, we have two telephone speech cor-
pora available: a 408-speaker corpus collected internally
at Texas Instruments (the “TT corpus”), and the Voice
Across Hispanic America (VAHA) corpus [6], sponsored
by the Linguistic Data Consortium as part of the POLY-
PHONE project.

The two corpora are similar in design and content, featur-
ing a combination of telephone service command phrases
(from domains such as voice-activated dialing, voice-
messaging, etc.), telephone and credit card numbers,
spelled words and phonetically rich sentences taken from
Spanish newswire texts. Overall, the TI corpus contains
48,824 utterances from 408 speakers (237 female and 171
male), while the VAHA corpus has 38,740 utterances from
915 speakers (570 female and 345 male). For purposes of
speech recognition training and testing, the principal dif-
ference is that the TI corpus contains about three times as
many utterances per speaker as VAHA (138 vs. 45), and
also a much greater proportion of telephone-number-style
digit strings. The TI corpus has about 60 digit strings and
60 command words and phrases per speaker, where VAHA
has 12 each of command phrases and numeric items of all
kinds, including money, dates, etc.

These corpora provide just the material needed for our
vocabulary- and speaker-independent recognition exper-
iments: training material in the form of read sentences;
testing material in the form of digit strings and command
phrases; and enough speakers so that test and training
voices do not overlap.

2.1. Test Data

For the initial round of testing, we selected 49 speakers
from the TI corpus, and from their utterances created
three test sets:

e CP: 2490 tokens of 60 command phrases,

e TEL: 2123 4-digit, 7-digit and 10-digit telephone
numbers, and

e PS: 826 phonetically rich sentences.



Note that for the TEL experiments, only digit strings
of ” American style” phone numbers were used for testing
recognition —i.e., where “3512” was said as tres cinco uno
dos instead of treinta y cinco doce.

Another complete ensemble of three test sets, identical in
size and structure, was set aside for future use.

2.2. Training Data

Training was done only on the phonetically rich sentences
in the two corpora. In the first series of experiments, we
used just the 4993 sentences from the TI corpus, read
by 310 speakers, 159 male and 151 female. In the sec-
ond series, we doubled the amount of training material
to 10404 sentences by adding 5411 VAHA sentences from
796 speakers, 303 male and 493 female. None of the 49
test speakers appeared in any of the training data.

3. EXPERIMENTS

3.1. Spanish Phonetic Models

Wheatley et al. [7] showed that effective acoustic mod-
els for a new language can be created by cross-language
adaptation from existing models of similar phonetic units.
They built Japanese phonetic HMMs from pre-existing
English models, and compared several methods of doing
this. Having both their Japanese and English models
available, we thought the adaptation would be simpler
from the Japanese models, because of greater isomor-
phism with the phoneme inventory of American Span-
ish. In fact, parametric experiments revealed that Span-
ish phonetic models bootstrapped from trained Japanese
telephone speech phonetic models performed better than
those derived from English. The bootstrapping was done
using cross-language adaptation techniques described in
[7]. The baseline model set had 46 (23 male and 23 fe-

Table 1. Spanish Phone Set

Phone Type | Phone List
Vowels aeiou
Stops bdgptk
Fricatives fsx
Affricates tS

Nasals mnn~
Semi-vowels | ljrr(w

male) context-independent (CI) finite-duration Spanish
phonetic models. We also used two gender-specific si-
lence models to account for silence and background noise.
Table 1 shows the 23 Spanish phones, using Worldbet
symbols [8]. /r/ refers to the trilled or double ‘r’, while
/r(/ is the tapped single ‘r’.

The baseline acoustic models were continuous density,
single-mixture, gender-specific Gaussians. The acoustic
features were 16 principal components of 34 LPC-based
filterbank and delta-filterbank parameters.

3.2. Training

The Spanish phonetic models were trained using a Viterbi
alignment algorithm. The pronunciations were derived
using Spanish letter-to-sound rules. The top-level gram-
mars used for recognition depended on the test set vocab-
ulary; all were constructed with standard tools normally
used for English. A length-constrained telephone number
grammar that allowed only 4-, 7- and 10-digit strings was
used for the TEL test set. An exact grammar that al-
lowed only the 60 command phrases was used for the CP
test set. A non-probabilistic word-pair grammar was used
for the PS set.

3.3. Experiment Series I

The objective of these experiments was to evaluate differ-
ent model types, using just the TI corpus training data:

CI finite-duration models (baseline set)

e CI infinite-duration models

multiple "mixture” models with 2, 3, 4 and 6 mix-
tures

finite duration (unclustered) triphones, and

infinite duration (unclustered) triphones

Our "mixtures” were implemented as a selection of one
of N Gaussians per state based on minimum acoustic dis-
tance, rather than weighting and combining of N Gaus-
sians. We use the term “Viterbi mixtures” to distinguish
them from the more common usage of mixtures. Recogni-
tion performance was evaluated only on the CP and TEL
sets. Since the triphones were not clustered, there were
too many unseen triphone contexts in the PS test set for
a fair test to be made at this point.

3.4. Results of Series I

Table 2 shows the recognition results on the two devel-
opment test sets. The #Models count excludes the two
silence models. In the table, the following terms need
further explanation:

e mix_non-mix: a condition in which 6-mixture mod-
els were used only for those phones in which each mix-
ture had at least 50 training exemplars. For phones
with less than 50 exemplars in any mixture, the corre-
sponding single mixture (baseline) models were used.
We found that single-mixture models had to be used

for /g/, /n /, /r/, /tS/, /w/ and /x/ as they fell
below the threshold.

e inf_triphones: refers to infinite duration triphones.

From these experiments, it is clear that

e infinite duration models perform slightly worse than
finite duration ones,

e multiple mixture models perform best on the CP task
(3.7% word error with 2 mixtures), and



Table 2. Experiment Series | results (% word error) on the
test vocabularies

Ezperiment #Models | CP | TEL
Cl_finite 46 | 4.7 9.7
Cl.infinite 46 | 4.9 | 10.5
2-mix 92 | 3.7 9.9
3-mix 138 | 4.0 9.9
4-mix 184 | 3.9 | 10.0
6-mix 276 | 4.7 9.0
mix_non-mix 210 | 5.0 9.3
triphones 5424 | 4.9 5.9
inf_triphones 5424 | 5.1 6.9

e the triphone-based digit recognition performances are
superior to the best monophone and mixture results
by around 30-40%. This indicates the importance
of contextual information for distinguishing among
connected digits, which have a substantial number of
inter-digit contexts.

3.5. Experiment Series II

The use of just 5000 phonetically representative sentences
and a few hundred speakers produces recognition results
in the 5 to 10% range. The better scores are on the larger
vocabulary CP task with shorter utterances, but the dra-
matic improvement provided by triphones shows only in
the digit strings, whose greater length offers more cross-
word as well as within-word contextual effects.

We have had success in English recognition using acoustic
phonetic decision trees (ADTSs)[9] to cluster triphones at
the state level [10, 11] as a means of modeling phonetic
context. Thus in the second series of experiments, our
objectives were: (i) to determine whether and by how
much the addition of the VAHA training data improves
performance, and (ii) to evaluate the effect of using ADTs
to cluster triphones at the state level.

Based on the results of the first series of experiments,
where some of the 3-mixture models had less than 100
tokens each, we decided not to include 4- and 6-mixture
models in this series. We did include a phonetic sentence
(PS) test condition, in view of the fact that the clustered
triphones provide coverage for them. The following con-
ditions were thus evaluated on CP, TEL and PS tasks:

e Baseline: 46 male and female monophone models
e 2Mix: monophone models with 2 Viterbi mixtures
e 3Mix: monophone models with 3 Viterbi mixtures

e TriClust: Triphones clustered using a decision tree

3.5.1. Triphone Clustering

We use the following procedure to cluster the Spanish tri-
phones by tying the HMM states. In the following steps,
we use the term “frame” or “acoustic frame” to refer to
an acoustic observation. Note that in a finite-duration
model, there is a many-to-one mapping between model
states and acoustic frames.

1. An initial set of 2798 male and 2831 female finite-
duration Spanish triphone models are created from
the trained monophones.

2. The acoustics of these triphones are trained for 2
passes over the training set, followed by one pass of
training for both the acoustics and the HMMs.

3. The HMMs of the trained triphones are now pooled
into monophone HMMs, to compensate for the low
training counts of many triphone models and to pre-
vent missing transitions in the triphone HMMs, given
that they are finite-duration models.

4. The pooled monophone HMMs, which are well-
trained, are then cloned into triphone HMMs. Each
of these “new” triphones will have the same HMM in-
formation as the corresponding monophone, but dif-
ferent acoustics.

5. A fourth pass over the training data with these new
triphones is followed by yet another pooling and
cloning procedure, as described in step 3.

6. A fifth and final pass is then made over the training
data, using the triphones from step 5. At the end of
step 6, we get triphones with well-trained acoustics
and well-trained HMMs.

7. The triphone frames are then clustered using ADTs.
The decision-tree questions for Spanish were for-
mulated using Spanish phonological rules and con-
straints. Based on our experience with English, we
used 1/3rd sub-model clustering, where the total
number of frames in each triphone is partitioned into
3 groups with comparable numbers of frames. For
example, a 3-frame ’b’ model will have 1 1 1 as its
partition, while a 4-frame 'r’ will have 2 1 1 as its
partition. A decision tree is formed for each group of
frames in the partition.

After clustering, the frames were used directly for recog-
nition, without retraining, which in our experience helps
only marginally. We mapped the triphone frames in our
recognition grammars to the clustered frames before run-
ning the recognition tests. Although this was a moot issue
for the CP and TEL tasks, all of whose triphone contexts
were already present in the training set, for the PS task
this mapping insured that unseen triphone contexts in the
test set were mapped to the nearest cluster.

3.6. Results of Series II
3.6.1. Triphone Clustering Results

We varied the number of clustered frames output from
2,000 to 12,000, obtaining a set of decision trees for each
value. The objective was to determine the best perform-
ing cluster size for the different tasks. Table 3 below shows
the results on the three tasks for different values of the
cluster size. The two numbers in the #Clusters column
represent the number of clusters requested and the num-
ber formed based on the decision trees. For each task,
the number in parentheses indicates the number of frames
actually used during recognition of the task vocabulary.
The 12,000 triphone clusters were only evaluated on the
PS task, as the performance on the CP and TEL tasks
was already asymptotic for much smaller sizes.



Table 3. Triphone Clustering Results (% word error)

# Clusters CcP TEL PS
2000/1943 | 1.9 (1169)| 5.5 (270)| 12.9 (1938)
4000/3932| 2.0 (1612)| 5.6 (286)| 12.3 (3901)
6000/5922 | 1.9 (1838)| 5.6 (291)| 12.1 (5809)
9000/8937 | 2.0 (2021)| 5.6 (292)| 12.7 (8437)

12000/11726 - - 12.0 (11726)

Table 4. Experiment Series 1l Overall Results (% word error)

Ezperiment #Models | CP | TEL PS
Baseline 46 | 3.1 9.5 | 26.2
2Mix 92 | 3.1 | 11.6 | 26.6
3Mix 138 | 2.8 9.3 | 21.7
TriClust (6k) 5629 | 1.9 5.6 | 12.1

3.6.2. Owerall Results

The overall results for Series II are shown in Table 4.
(For ease of comparison, just the figures from the 6k
cluster condition are repeated on the line representing
the triphone clustering results.) Doubling the amount
of available training data does improve performance sub-
stantially. On the CP task this is true across all condi-
tions:

e 32% improvement with the baseline monophone mod-
els (3.1% vs. 4.7%),

e 16% improvement with 2-mixture models (3.1% vs.
3.7%), and

e 30% improvement with 3-mixture models (2.8% vs.

4.0%).

On the TEL task, the improvement is less dramatic, and
in one condition (2-mixture models) the WER actually
increases from 9.9% to 11.6%, an anomalous result which
needs further investigation. Whether, or by how much,
the addition of more data would improve performance on
each task is also unknown at this point.

For the amounts of training data available, the clustered
triphones, not surprisingly, provide the best performance
in all three task vocabularies, though of course at a cost
in terms of increased numbers of models. Compared to
3-mixture monophone models. for example, they provide
improvements of 32%, 40% and 44% on the CP, TEL and
PS tasks, respectively. They thus appear to do the best
job of accounting for phonetic context on this scale.

Substitution errors contributed significantly to the error
rates for the CP and TEL vocabularies in both series of ex-
periments. For example, for the Spanish digits, we found
that tres and seis were the most confusable (around 250
confusions), while among the command phrases, recog-
nition performance was most affected by the confusion
between diferido and diferida, and between operador and
operadora.

4. CONCLUSION

Creating a vocabulary-independent speech recognition
system for a new language with modest training resources
is a challenging but realistic task. For a system being
ported from English to Spanish and tested on different
tasks, the performance levels in these first experiments
are, if not commercially competitive, nevertheless encour-
aging as a point of departure for the development of useful
technology. Further improvements can undoubtedly be
achieved, especially for the small vocabulary tasks, with
the ADT-clustered triphone techniques, with more tar-
geted or adaptive training, and with the availability of
more representative data.
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