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ABSTRACT

 Predicting speech recognition performance in place of
expensive recognition experiments is a very useful
approach for the research and development of speech
recognition systems. In this paper, we propose a method
to predict speech recognition performance when using
new test data and/or a new acoustic model. Performance
prediction tests showed that the proposed method can
accurately predict recognition performance, thus saving
a large amount of computer resources.

1. INTRODUCTION

 In building a speech recognition system, many
experiments are required to verify the effectiveness of
new ideas. This, however, consumes too much time and
a large amount of computing resources (CPU, memory).
A performance prediction technique could save such
time and resources and enable us to develop several
systems more efficiently.
 In [1], prediction of the word spotting performance
when using a new test data of similar quality was
investigated. This type of prediction is, however, not
very useful because the assumption of similar quality is
impractical for real-world speech.
 In this paper, we address the issue of predicting the
performance of a hidden Markov model (HMM) based
continuous speech recognizer under two conditions:
• either new test data of unrestricted quality or a new

acoustic model is given;
• both new test data and a new acoustic model are

given.
 In order to solve this problem, we must find a measure
that can be calculated with much lighter processing than
speech recognition and that has a strong correlation to
recognition performance.  Such a measure would also be
useful in clarifying the mechanism of recognition error
occurrence.
 In Section 2, the basic ideas behind our prediction
techniques are given. Section 3 shows the prediction
procedure. In section 4, prediction tests carried out using
spontaneously spoken dialogue speech data are

explained, and the results show the accuracy of the
proposed method.

2. BASIC IDEAS

2.1 Performance prediction for new test data
and/or a new acoustic model

 For each case, a new mismatch condition between test
data and acoustic model  is given. Therefore, if we can
know beforehand how a recognizer performs for several
degrees of the mismatch and if we can measure the
degree of mismatch for each pair of new test data and
acoustic model, we can approximate the performance of
recognizer "X" for test data D and an acoustic model M
as

ρ = R (δ (M,D) ; X) ,

where
R (∆;X): the performance of recognizer "X " for a

degree of mismatch ∆, and
δ (M,D): the degree of mismatch between acoustic

model M and test data D.
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Fig. 1 Performance prediction for a new
mismatch condition



 Consequently, the performance prediction problem is
reduced to the problem of how to define R (∆ ; X) and
δ (M , D) (Fig. 1).

2.2 Estimating recognition performance for several
degrees of acoustic modeling mismatch

 In this paper, we try to estimate by simulation the
performance of a recognizer for several degrees of
acoustic modeling mismatch.
 We can artificially generate a set of samples that ideally
match the acoustic model by the Monte Carlo method;
this is done by using output distributions of the acoustic
model as generator distributions. We can also generate a
set of samples with a certain degree of mismatch by
substituting some generator distributions with alternative
distributions during the Monte Carlo process. Then, by
gradually varying the probability of the substitution, we
can generate samples with gradually varying degrees of
mismatch (Fig. 2). The Mismatch-Performance curve
given by carrying out a recognition test using such
artificial samples approximately shows the behavior of
R(∆ ; X). Using a well-trained HMM and a phonetically
rich text corpus (label files), the plotted curve can be
generally used for any acoustic model and for any test
data.

2.3 Measuring degree of mismatch in acoustic
modeling

 The degree of mismatch between test data and an
acoustic model is measured by the frame-level error rate.
The frame-level error rate is defined as the substitution
error rate at the frame level, and can be easily calculated
by applying Viterbi alignment using the label sequence
for the test data (Fig. 3). That is:

δ(M,D) = 

E(P(oi|gi) - {Pmax
γ∈ Γ

(oi|γ)})∑
i 

N

E(ε) = 
0 (ε ≥ 0)
1  (ε < 0),

where
oi : the observation at frame #i in data D,
gi : the output distribution assigned to frame #i by

Viterbi alignment between data D  and
acoustic model M,

Γ  : the set of output distributions in acoustic
model M,

N : the number of frames in data D, and

P(o|g) : the local likelihood of observation o  for
output distribution g.
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Fig. 2 Mismatched speech data generation
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Fig. 3 Frame-level error rate calculation

3. PERFORMANCE PREDICTION PROCEDURE

 The performance prediction procedure based on the
above ideas is summarized as follows.



[Preliminary step]
Plot Mismatch-Performance curve for the
target speech recognizer by the Monte Carlo
method. Here, the mismatch is measured by
the frame-level error rate.

[Step-1] Measure the frame-level error rate as the
degree of mismatch between the given test
data and acoustic model by Viterbi alignment.

[Step-2] Read the figure of performance for the degree
of mismatch from the Mismatch-Performance
curve.

In this procedure, The preliminary step can be executed
beforehand and is required only once. For every new
data-model pair, only Step-1  and Step-2 have to be
executed. Because Viterbi alignment needs no lexicon
and is associated with no growth of the search space, this
method requires a much smaller amount of computer
resources than speech recognition experiments. The
effect of saving time is not so remarkable in this
procedure since mismatch measuring  based on Viterbi
alignment takes some time. Nevertheless, it is still an
advantage that the required time is generally constant
because it does not depend on the growth of the search
space.
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Fig. 4 Performance prediction procedure

4. EXPERIMENTS

4.1 Target speech recognizers

 The performance of the following two types of speech
recognizers were predicted.

• A Japanese continuous phoneme recognizer with
syllabic rule constraints (Recog-1)

• A Japanese continuous speech recognizer featuring
class bigram constraints and word graph outputs with
a lexicon of 1,200 words [2] (Recog-2)

  Here, the class bigram was generated by a variable-
order N-gram procedure [3]. For both of the speech
recognizers, state-shared, context dependent and speaker
independent HMMs with diagonal covariances (HMnet
[4]) were used as acoustic models. The details of
recognition conditions are summarized in Table 1.

Table 1 Speech recognition conditions
Acoustic
analysis

• Sampled at 12kHz with 16 bit
• Preemphasized with 1- 0.97z -1

• 20ms Hamming window
• 10ms frame shift
• 16th order LPC cepstra + ∆cepstra
   +  power + ∆power

Acoustic
model

• 401-state speaker independent HMnet
400 states for allophone HMMs
1 state for a silence HMM
10 mixture/state or 5 mixture/state

Language
model

Recog-1 • Japanese syllabic rules

Recog-2 • 1,200 words
• Variable order class N-gram
    Number of classes: 500

4.2 Plotting Mismatch-Performance curve

 Mismatch-Performance curves were plotted using label
sequences of 50 Japanese phonetically-balanced
sentences with the mismatch measured by the frame-
level error rate. The alternative distributions were chosen
from other distributions in the HMnet, taking into
account the frame-level error tendency. Even if no
distributions were substituted in data generation process,
there were some errors in generated data because of
randomness. Therefore, the curves were plotted with the
mismatch (error rate) from approximately 0.1.

4.3 Prediction tests

 Performance prediction tests were carried out for
Recog-1 and Recog-2, and the predicted performances
were compared with the true performances for several
combinations of test data and acoustic models. For these
tests, all utterances were from a spontaneous speech
dialogue corpus in the "Travel arrangement" (e.g., hotel
reservation) task domain [5].
 Fig. 5 and Fig. 6 show the results for Recog-1 (54
different speaker's speech) and Recog-2 (15 different
speaker's speech), respectively. In both cases, the
predicted performance by the proposed method well



fitted the upper-limit of the true performance at each
degree of mismatch between the test data and acoustic
model. From the viewpoint of system development, it is
very useful  to know beforehand the upper-limit of the
recognition performance with much smaller amount of
computer resources than speech recognition experiments.
Our prediction method required thirty or forty times
smaller amount of memories than the Recog-2 under a
reasonable setting required.
 We also found that, for test data with a low S/N ratio,
the true performances tended to be lower than the
predicted performances. This implies that the proposed
method is more widely applicable when we improve the
measure of mismatch (e.g., multidimensional measure).
 Furthermore, the prediction results proved the strong
correlation between the frame-level error rate and the
recognition rate, which supports the hypothesis that the
frame-level  error is one of the major factors in
recognition error occurrence.

5. CONCLUSIONS

 A method of predicting the speech recognition
performance when using new test data and/or a new
acoustic model was proposed. Performance prediction
tests showed that the proposed method can easily and
accurately predict recognition performance. Since this
method is based on mismatch measuring by Viterbi
alignment, which needs no lexicon and is associated with
no growth of the search space, we can save much of
computing resources. And the strong correlation between
the frame-level error rate which was defined in this
paper and the recognition rate supports the hypothesis
that the frame-level  error is one of the major factors in
recognition error occurrence.
 As future work, we are planning to improve the
mismatch measure to enhance accuracy.
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Fig. 5 Prediction result (Recog-1)
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Fig. 6 Prediction result (Recog-2)


