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ABSTRACT

We refer to environment e as some combination of speaker,
handset, transmission channel and noise background condi-
tion, and regard any practical situation of a speech recog-
nizer as a mixture of environments.

A speech recognizer may be trained on multi-environment
data. It may also need to adapt the trained acoustic mod-
els to new conditions. How to train an HMM with multi-
environment data and from what seed model to start an
adaptation are two questions of great importance.

We propose a new solution to speech recognition which
is based on, for both training and adaptation, a separate
modeling of phonetic variation and environment variations.
This problem is formulated under hidden Markov process,
where we assume,

� Speech x is generated by some canonical (indepen-
dent of environmental factors) distributions,

� An unknown linear transformation We and a bias be,
speci�c to environment e, is applied to x with prob-
ability P(e),

� x cannot be observed, what we observe is the outcome
of the transformation: o =Wex+ be.

Under maximum-likelihood (ML) criterion, by application
of EM algorithm and the extension of Baum's forward and
backward variables and algorithm, we obtained a joint so-
lution to the parameters of the canonical distributions, the
transformations and the biases, which is novel.

For special cases, on a noisy telephone speech database,
the new formulation is compared to per-utterance cepstral
mean normalization (CMN) technique and shows more than
20% word error rate improvement.

1. INTRODUCTION

We refer to environment as speaker, handset, transmis-
sion channel and noise background conditions. Any speech
signal can only be obtained in a particular environment.
Speech recognizers su�er from environment variability, for
two reasons:

� Trained model distributions may be biased from test-
ing signal distributions because of environment mis-
match.

� Trained model distributions are 
at because they are
averaged over di�erent environments.

For the �rst problem, the environmental mismatch can
be reduced through model adaptation [6, 5, 7], based on
some utterances collected in the testing environment. To
solve the second problem, which has not been addressed
until recently, the environmental factors should be removed
from the speech signal during the training procedure, i.e.
by source normalization.

A practical speech recognizer may be given a variety
training data, collected with di�erent speakers, handsets,
transmission channels and background noises. It may also
adapt the trained acoustic models to new conditions.

Optimality-related questions therefore arise: 1. How to
train an HMM with data collected in di�erent conditions?
2. What is the optimum seed model to start an adaptation?
Source normalization presented in this paper provides an
answer to these questions.

In the direction of source normalization, speaker adap-
tive training [2] uses linear regression (LR) to decrease inter-
speaker variability. Another technique models mean vectors
as the sum of a speaker-independent bias and a speaker-
dependent vector [1]. However, regarding to environment,
both techniques are supervised, i.e.: they require explicit
label of the classes, e.g. speaker or gender of the utterance
during the training. Therefore they cannot be used to train
classes which cannot be labeled, such as acoustically close
speakers, handsets or background noises. Such inability of
discovering clusters may be a disadvantage in application.

We provide a maximum likelihood (ML) LR solution
to the environment normalization problem, where the en-
vironment is modeled as a hidden (non-observable) vari-
able. An EM-based training algorithm can generate any
number of optimal clusters of environments and therefore
it is not necessary to label a database in terms of environ-
ment. For special cases, the technique is compared to per-
utterance cepstral mean normalization (CMN) technique
and shows performance improvement on a noisy telephone
speech database.

2. SOURCE NORMALIZATION

2.1. Formulation

We assume: 1. The speech signal x is generated by con-
tinuous density hidden Markov model (CDHMM), called
sources. 2. Before being observed, the signal has under-
gone an environmental transformation, drawn from a set
of transformations. Such a transformation is linear, and is
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independent of the mixture components of the source. Let
Wje be the transformation on the HMM state j of the envi-
ronment e. 3. There is a bias vector bke at the k-th mixture
component due to environment e.

What we observe at time t is thus:

ot =Wjext + bke (1)

Figure-1 illustrates the model.

SOURCE DISTRIBUTION

OBSERVATION DISTRIBUTION

Figure 1: For a given sound (e.g.: phone), the distribution
of the observations in di�erent (class of) environments is
transformed from a source distribution of the parameter
space (e.g.: MFCC), by a linear transformation (shown as
\!") which is dependent on the environment, state and
mixture component.

Notice that xt is not observable and the distribution of
x is not known, which di�ers the present work from model
adaptation schemes, e.g. [5]. Also, in [2, 1], a supervision
signal on the environment e must be given, e.g.: speaker
identity, male/female. This work overcomes this potential
limitation by allowing unsupervised training, i.e.: any de-
sired number of environments can be speci�ed which are
optimally trained from the database. Therefore [2, 1] can
be regarded as special cases of the formulations presented
here.

Our problem now is to �nd, in the HMM framework
and in the ML sense, the optimal source distributions, the
transformation and the bias set.

Let N be the number of HMM states, M be the mix-

ture number, L be the number of environments, 
s
4

=

f1; 2; : : : Ng be the set of states, 
m
4

= f1; 2; : : :Mg be the

set of mixture indicators, and 
e
4

= f1; 2; : : : Lg be the set
of environment indicators.

For an observed speech sequence of T vectors: O
4

=

oT1
4

= (o1;o2; : : : oT ); we introduce state sequence �
4

=

(�0; : : : �T ) where �t 2 
s, mixture indicator sequence �
4

=
(�1; : : : �T ) where �t 2 
m, and environment indicator se-

quence �
4

= ('1; : : : 'T ) where 't 2 
e. They are all unob-
servable.

As a generalization of mixture CDHMM [4], the joint
probability of O;�;� and � given model � can be written

as:

p(O;�;�;�j�) = u�1

TY

t=1

c�t�t b�t�t'(ot)a�t�t+1 l' (2)

where

bjke(ot)
4

= p(otj�t = j; �t = k; ' = e; �) (3)

= N(ot;Wje�jk + bke;�jk); (4)

whereN(x;m;�) stands for Gaussian distribution with mean
vector m and covariance matrix �, and

ui
4

= p(�1 = i); aij
4

= p(�t+1 = jj�t = i) (5)

cjk
4

= p(�t = kj�t = j; �); le
4

= p(' = ej�) (6)

2.2. ML parameter estimation

The model parameters can be determined by applying gen-
eralized EM-procedure [3], in which two kinds of data are
involved: observable X and non-observable (hidden vari-
ables) Y. The set fX;Yg is called complete data. The EM
algorithm maximizes, w.r.t. a new parameter set �, the
mathematical expectation of the log-likelihood of the com-
plete data, conditioned on the observed data X, and for a
value �� 2 � of the parameter. The expectation is taken
over the sample space of the unobservable data Y :

Q(�j��)
4

= EY
�
log p(X;Yj�)jX; ��

	
(7)

An important property of the EM algorithm is that the log
likelihood p(Xj�) is guaranteed to improve monotonically
until it reaches a stationary point.

For our case, hidden variables are Y
4

= f�;�;�g and ob-

servables are X
4

= fOg. To derive re-estimation equations,
the forward-backward variable in CDHMM formulation [4]
must be extended. Denote:

�t(j; e)
4

= p(ot1; �t = j; ' = ej��) (8)

�t(j; e)
4

= p(oTt+1j�t = j; ' = e; ��) (9)


t(j; k; e)
4

= p(�t = j; �t = k; ' = ejO; ��) (10)

By equating the derivative of (7) w.r.t. each parameter of
the model to zero, and solve the resulting joint equations,
we can obtain the re-estimation formulae of all the param-
eters.

2.2.1. Initial state probability

ui =
1

R

RX

r=1

P
e2
e

�r1(i; e)�
r
1(i; e)P

i2
s

P
e2
e

�r1(i; e)�
r
1(i; e)

(11)

with R the number of training tokens.
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2.2.2. Transition probability

aij =

�aij

RX

r=1

1

p(O
r
j��)

X

e2
e

TrX

t=1

�
r
t (i; e)bje(o

r
t+1)�

r
t+1(j; e)

RX

r=1

1

p(Orj��)

X

e2
e

TrX

t=1

�
r
t (i; e)�

r
t (i; e)

(12)

2.2.3. Mixture component probability

cjk =

RX

r=1

X

e2
e

TrX

t=1



r
t (j; k; e)

RX

r=1

1

p(Orj��)

X

e2
e

TrX

t=1

�
r
t (j; e)�

r
t (j; e)

(13)

2.2.4. Environment probability

le =
1

R

RX

r=1

P
j2
s

�rT (j; e)P
e2
e

P
j2
s

�rT (j; e)
(14)

2.2.5. Mean vector and bias vector

We introduce:

�(j; k; e)
4

=

RX

r=1

TrX

t=1



r
t (j; k; e)o

r
t (15)

%(j; k; e)
4

=

RX

r=1

TrX

t=1



r
t (j; k; e) (16)

and

Gke =
X

j2
s

%(j; k; e)��1jk (17)

Ejke = %(j; k; e)Wje
0��1jk (18)

Fjk =
X

e2
e

EjkeWje (19)

ajk =
X

e2
e

Wje
0

�
�1
jk �(j; k; e) (20)

cke =
X

j2
s

��1jk �(j; k; e): (21)

In the framework of generalized EM, we can assumeWje =

Wje and ��1jk = �jk
�1
, for a given k, we have N + L

equations:

X

e2
e

Ejkebke + Fjk �jk = ajk 8j 2 
s (22)

Gkebke +
X

j2
s

Hjke �jk = cke 8e 2 
e (23)

Therefore �jk and bke can be simultaneously obtained by
solving the linear system of N + L variables.

2.2.6. Variance

�jk =

P
e2
e

PR

r=1

PTr

t=1 

r
t (j; k; e)�

r
t (j; k; e)�

r
t (j; e; k)

0

P
e2
e

%(j; k; e)

(24)

where �rt (j; k; e)
4

= ort �Wje�jk � bke

2.2.7. Transformation

We assume covariance matrix to be diagonal: ��1jk
(m;n)

=

0 if n 6= m: Similar to [5], for the line m of Wje, we
can derive:

Z
(m)
je =Wje

(m)
Rje(m) (25)

which is a linear system of D equations, where:

Z
(m;n)
je

4

=
X

k2
m

��1jk
(m;m)

�jk
(n)

RX

r=1

TrX

t=1



r
t (j; k; e)(o

r
t � bke)

(m)

(26)

R
(p;n)
je (m)

4

=
X

k2
m

��1jk
(m;m)

�jk
(p)
�jk

(n)
RX

r=1

TrX

t=1



r
t (j; k; e):

(27)

If the means of the source distributions (�jk) are as-
sumed constant (trained by conventional CDHMM reesti-
mation procedure), then the above set of source normaliza-
tion formulae can also be used for MLLR model adaptation
[5].

3. EXPERIMENTAL EVALUATION

3.1. Database

The recognition task has 53 commands of 1-4 words. (\call
return", \cancel call return", \selective call forwarding",
etc). Utterances are recorded through telephone lines, with
a diversity of microphones, including carbon, electret and
cord-less microphones and hands-free speaker-phones. Some
of the training utterances do not correspond to their tran-
scriptions, due to mis-detection of speech/non-speech. For
example: \call screen" (cancel call screen), \matic call back"
(automatic call back), \call tra" (call tracing). No special
treatment was devoted to these cases.

The speech is 8kHz sampled with 20ms frame rate. The
observation vectors are composed of LPCC derived 13-MFCC
plus regression based delta MFCC. CMN is performed at
the utterance level for all tests. There are 3505 utterances
for training and another 720 for speaker-independent test-
ing. The number of utterances per call ranges between 5-30.

3.2. Experiments

Because of data sparseness, besides transformation sharing
among states and mixtures, the transformations need to
be shared by a group of phonetically similar phones. The
grouping, based on an automatic hierarchical clustering of
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phones, is dependent on the amount of data for training
or for adaptation, i.e., the larger the number of tokens is,
the larger the number of transformations. Each recogni-
tion experiment uses either of the following HMM training
options:

� baseline uses conventional CDHMM. Notice that
per-utterance cepstral mean normalization (CMN) is
used (as in all other options). As simple technique,
CMN will remove channel and some long-term speaker
speci�cities, if the duration of the utterance is long
enough, but cannot deal with time domain additive
noises.

� sncdhmm performs source-normalized CDHMM train-
ing as described in the paper, where the utterances of
a phone call are assumed to have been generated by
a call-dependent acoustic source. Speaker, channel
and background noise that are speci�c to the call is
reduced by SN-MLLR. We evaluated a special case,
where each call is modeled by one environment. In
recognition, only source distribution parameters are
used and transformation and bias obtained during the
training are discarded.

� baseline+ad adapts traditional HMM (baseline)
parameters by unsupervised MLLR. 1. using current
HMMs and task grammar to phonetically recognize
the test utterances, 2. mapping the phone labels to
a small number (N) of classes, which depends on the
amount of data in the test utterances. 3. estimating
the LR using the N-classes and associated test data.
A similar procedure has been introduced in [5].

� sncdhmm+ad refers to MLLR adaptation with seed
models trained by sncdhmm technique.

The resulting acoustic models are then used for recognition
tests.

3.3. Findings

Based on the results summarized in Table-1, we point out:
A. For numbers of mixture components per state smaller
than 16, SNCDHMM, BASELINE+AD, and SNCDHMM
+AD all give consistent improvement over the baseline con-
�guration.
B. For numbers of mixture components per state smaller
than 16, SNCDHMM gives about 10% error reduction over
the baseline. As SN is a training procedure which does not
require any change to the recognizer, this error reduction
mechanism can be immediately ported to applications.
C. For all tested con�gurations, MLLR adaptation using
acoustic models trained with SN procedure always gives ad-
ditional error reduction, compared to using models trained
with conventional re-estimation procedures.
D. The most e�cient case of SNCDHMM+AD is with 32
components per state, which reduces error rate by 23%,
resulting 4.64% WER on the task.

4. CONCLUSION

Wemodel speech phonetic variations by source distributions
and environmental variations by a set of linear transforma-
tions and biases. The separation of the two types of ran-

4 8 16 32

BASELINE 7.85 6.94 6.83 5.98
SNCDHMM 7.53 6.35 6.51 6.03

BASELINE+AD 7.15 6.41 5.61 5.87

SNCDHMM+AD 6.99 6.03 5.41 4.64

Table 1: word error rate (%) as function of test con�gura-
tion and number of mixture components per state

dom quantities makes it possible to share, among di�erent
environments, the information on the phonetic variations
through source distributions.

We extended Baum's forward-backward variables to take
into account of non-observable environmental variables and
derived a set of re-estimation equations for source-normalized
CDHMM. The unsupervised environment training allows
any desired number of environments. By setting We = 1
and be = 1, the SN-CDHMM reduces to CDHMM. By �x-
ing source distribution parameters, i.e., mean vectors and
covariance matrices, the formulation can be used for MLLR
model adaptation.

Experiments show that for the given database, MLLR
adaptation from seed models provided by source normalized
training procedure consistently gives lower word error rate
than from models by conventional Baum-Welch procedure.
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