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Abstract

It is known that incorporating the temporal
information of state durations into the HMM can
achieve higher recognition performance. However,
when a speech signal is contaminated by ambient noises,
it is very possible for a state to stay too long or too short
in decoding a state sequence even if state durations are
adopted in the models. This phenomenon will severely
reduce the efficiency of modeling techniques for state
durations. To overcome this problem, a proportional
alignment decoding (PAD) method combining with
state duration statistics is proposed and proved
experimentally to be effective when the speech signal is
distorted by ambient noises. Instead of using Viterbi
decoding algorithm, the PAD method is used for state
decoding in the retraining phase of a conventional
HMM and produce a new set of state duration statistics.
This state duration alignment scheme is more efficient
to prevent a state from occupying too long or too short
in recognition phase.

1. Introduction

For speech recognition based on the hidden Markov
model, many researches have proved that explicitly
modeling the probability density functions (pdf) of state
durations can achieve higher recognition performance.
Usually, the state durations are modeled in two ways, i.e.,
nonparametric [1}-[4] and parametric [5]-[7] methods. In
nonparametric method, the probability density functions
of state durations are estimated via a direct counting
procedure on the training data. This approach requires an
enormous amount of training utterances in order to reach
to a desired degree of accuracy. On the other hand, in
parametric method, some continuous probability density
functions are used to model the state duration
distributions explicitly, and by which only a few
parameters are required to completely specify its
probability density function. In the hidden semi-Markov
model [5] proposed by M. J. Russell and R. K. Moore,
they adopted Poisson function as the basic framework for
modeling durational structures. Levinson [6] presented a

continuously variable duration hidden Markov model
( CYDHMM ) in which the probability of occupying a
state over a specific duration length is governed by the
gamma density function. In addition, H. Y. Gu et al. [7]
also proposed a hidden Markov model with bounded
state durations (HMM/BSD) in which the allowable state
durations are constrained by some boundaries. As
compared to other approaches, the state durations of
HMM/BSD are simply lower and upper bounded in the
recognition phase, and can be estimated during the
training phase.

In fact, the distribution of state durations is different
from state to state and not confined to a certain type of
probability density function. This phenomenon can be
verified by the histograms shown in Fig. 1. Fig. 1 shows
the histograms of state duration distributions for the 4-th
and 6-th states in a conventional HMM for isolated
Mandarin digit ‘5’. From those histograms, we can find
that any assumed pdf may not always fit to the practical
statistical characteristics of each state in a hidden
Markov model. Moreover, it is worth to note that the
distributions of allowable state durations are widespread
and smooth. This kind of pdf will make it very possible
for a state to stay too long or too short in decoding a state
sequence. When a speech signal is contaminated by
ambient noises severely, an erroneous maximum
likelihood state sequence may be obtained even if only a
few of its states have extremely high likelihoods while
the other states have very poor likelihoods. In this paper,
a proportional alignment decoding (PAD) method
combining with state duration statistics is proposed to
retrain a conventional HMM and produce a new set of
state duration statistics.

2. HMM with Variable State Duration

When the statistics of state durations are incorporated
into a conventional hidden Markov model (HMM) [6],
the likelihood function of this variable duration HMM
(HMM/DUR) [6][8] can be defined with the aids of
forward and backward likelihoods. Let the forward

likelihood «, (w, ) and backward likelihood
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Fig. 1. The state duration distributions of the 4-th and
6-th states of HMM for isolated Mandarin digit °5°.
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Then, given a hidden Markov model, the likelihood
function of an observation sequence can be modeled as
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where O = (0,,0,,...,0; ) denotes the observation
sequence, 1/, the hidden Markov model for word w
with S, states, D(w,/) the maximum duration
within the j-th state of word model A/, g, the present
state at time £,a,(w) the state-transition probability
from state 7 to state j of word model M, b, ;(0,)
the symbol distribution of 0, in the j-th state of word
model A, ,and p, ;(d) the j-th state duration pdf

of word model M, with duration length of d frames.

Based on above definition, the derivation of reestimation
formulas for the variable duration HMM is formally
identical to those for the conventionai HMM [8].
Moreover, for a left to right HMM without jumps, the
recursive equations listed in [7] are modified to calculate

the likelihood, p(O|M ), and can be summaried as
following :

for d =1
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where ¥ ,(w,J,d) represents the maximum likelihood
of proceeding from state 1 to state j— lalong a state
sequence of duration length (f—d) frames and
producing the observations o0,,0,,...0,_,, and then
staying at the state j and producing the observations
O _av1>--50,_15
equations, we can find that the likelihood function
p(O/M,) may be dominated by the term

0, at this state. From above recursive

“log[ b, ;(0,)] “ even though the probability density

function p, ; (d) for some allowable duration lengths

are very low.

3. PAD Method for HMM Retraining

A hidden Markov model which has a more
concentrated pdf of state durations may be more efficient



to inhibit a state occupying too long or too short signal
frames. In this paper, a proportional alignment decoding
(PAD) method instead of the Viterbi decoding algorithm
is proposed for state decoding and produce a new set of
state duration statistics whose probability density
functions are more concentrated.

The PAD method is proceeded as follows. At first,
using the segmental k-means algorithm, all of training
utterances can be trained into an initial set of word
models. Based on those word models and Viterbi
decoding algorithm, we can decode each training
utterance into state sequence. By using the state
sequences decoded for training utterances, we can
calculate the state duration mean for each state. For the

case of state I in word W, its state duration mean is

_ 1 M
d(W,l) = N—zd(W,laJ) > @)

w j=1
where N, is the number of training utterances for word
w,and d(w,i, j) is the duration of state / in word W

for the j -th training utterance. The word duration mean

is defined as the accumulation of all the state duration
means in a word, and expressed as

Se
d(w) = Zd(w,i), (8)

where S is the number of states in the hidden Markov

model of word w. Then the ratio of a state duration in a
word is calculated by

r(w,i) = 7 )

Once we obtain r(w,i) for all word model, the state
decoding procedure can be proceeded in a simple way.
For example, a training utterance j of word w has
duration of d(w,j) frames. We align the duration for each
state in this utterance by the following equation

d(w,i, ) =[r(w,i)xd(w,j)-05],  (10)
where |—x_| denotes the smallest integer which is
greater than or equal to x.

The proposed retraining scheme has four stages : (1)
Use the segmental k-means algorithm and Viterbi
decoding method to train a set of conventional HMMs
which are used as the initial set of word models. (2)
Based on those initial word models, estimate the
parameter r(w,i) for every word model. (3) Realign all
the training utterances by the PAD method and produce a
new set of word models. (4) Collect the state duration
statistics p,, (d) from the new set of word models and

use Egs. (1)-(3) to retrain a final set of word models. The
resulted hidden Markov model is denoted as HMM/PAD.

In Fig. 2, the histograms of state duration distributions
for the 4-th and 6-th states in the HMM/PAD for isolated
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Fig. 2. The state duration distributions of the 4-th
and 6-th states of HMM/PAD for
isolated Mandarin digit *5’.

Mandarin digit ‘5’ are illustrated. Making a comparison
between Fig. 1 and Fig. 2, we can find that the state
duration distributions of HMM/PAD are more
concentrated than those of the conventional HMM. In
addition, the relative probability is raised from 0.15 in
Fig. 1(b) to 0.4 in Fig. 2(b).

4. Experimental Results and Discussions

A multispeaker ( 50 males and 50 females )
isolated Mandarin digit recognition [9] was conducted to
verify the effectiveness of the proposed HMM retraining
method using the PAD method. There were three
sessions of data collection and for each session every
speaker uttered a set of 10 Mandarin digits. The first two
sessions are used for training the word models and the
other for testing. Endpoints are not detected so that each
utterance still contains about 0.1~0.5 seconds of pre-
silence and post-silence. Each digit is modeled as a left-
to-right HMM without jumps in which the output of each
state is a Gaussian distribution of feature vectors. Each
feature vector consists of 12 LPC derived cepstral
coefficients, 12 delta cepstral coefficients, and one delta
log-energy. The additive white noise was added to clean
speech with predetermined SNRs to generate various
noisy speech signals.



Table 1. Comparison of recognition rates

training | recognition
method method |clean|20dB[15dB|10dB| 5dB | 0dB
HMM Viterbi | 97.2148.830.8}19.2|11.2}10.0

HMM Dur 97.6162.0(42.8}268]208|17.6

HMM/DUR Dur 97.6167.6149.2(31.2(240}18.4

HMM/PAD Dur 96.8172.4(60.0144.0]129.6|248

In our experiments, except the conventional HMM
(HMM), two kinds of hidden Markov models are also
investigated. The first one is the HMM with variable
state duration (HMM/DUR), i.e., using Eq. (1)-(3) to
retrain a conventional HMM. The second one is the
HMM trained by the proposed retraining scheme
(HMM/PAD). Moreover, in the recognition phase, two
kinds of state decoding methods are implemented, i.e.,
Viterbi decoding algorithm (Viterbi) and state decoding
using Eq. (4)-(6) (denoted as ‘Dur’). The preliminary
results of our experiments are shown in Table 1. From
this table we can find the following facts : (1) Even
without incorporating the statistics of state durations into
the training phase of a conventional HMM, state
decoding method based on pdf of state durations in the
recognition phase can make further improvement in
recognition rates. (2) When the information of state
durations is taken into account in both training and
recognition phases, it can reduce the mismatch between
the reference models and testing speech, and obtains
higher recognition performance. (3) By means of the
PAD method, the HMM/PAD model is more robust to
noisy environment and the improvement is remarkable.

5. Conclusions

In this paper, we first demonstrated the practical
distributions of state durations in a conventional HMM
and pointed out its impacts on speech recognition
performance. And then, a new method based on the
proportional alignment decoding is proposed to train a
new set of hidden Markov models which are more robust
to noisy environment. The PAD method enables us to
make the pdf of state durations more concentrated, and
thus it will be able to prevent a state from staying too
long or too short in decoding a state sequence.
Experimental results shows that the HMM/PAD model is
more robust to ambient noises than those hidden Markov
models with or without incorporating durational model.
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