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ABSTRACT

We describe a new algorithm for topic classification that
allows discrimination among thousands of topics. A
mixture of topics explicitly models the fact that each
story has multiple topics, that different words are related
to different topics, and that most of the words are not
related to any topic. The resulting model, trained by
EM, has sharper distributions of words that result in
more accurate topic classification. We tested the
algorithm on transcribed broadcast news texts. When
trained on one year of stories containing over 5,000
different topics and tested on new (later) stories the first
choice topic was among the manually annotated choices
76% of the time.

1. INTRODUCTION

This paper deals with the problem of classifying the
topic or topics in a document among a large set of
predefined topics. Topic classification can be used for
skimming, categorizing, or retrieving documents. We
distinguish topic classification from typical document
retrieval, in which a query consisting of a set of words is
compared with documents using a comparison based on
weighted word similarity. In particular, here we assume
that we have a substantial number of documents that
have previously been classified as to the topics
contained, allowing for a wide variety of more powerful
probabilistic algorithms to be applied.

Previous efforts at topic classification [1-6] dealt with
only tens of topics. The method most commonly used to
model a topic is simply to count the number of times
each word occurs in all the stories that are labeled with
that topic. Then, to classify a new story, one multiplies
the relative frequencies of all the words in the story for
each topic and chooses the topic with the highest
product. Various smoothing [3] and word selection
techniques [1] have been developed to try to make this
method work better.

The fundamental problem with the relative frequency
approach is that a particular word in a story may be
related to one, or sometimes two of the topics, but rarely
does one word indicate all of the topics. In addition,
most of the words in a story are not directly related to
any of the main topics, but rather are just general words
in the language, or are related to other minor topics.
Finally, a real story (such as the news stories in

broadcast news data) typically has several topics. For
example, a story discussing U.S. policies on loans to
Mexico is labeled with four topics: “Clinton, Bill”,
“Mexico”, “Money”, and “Economic assistance,
American”. The relative frequency approach falsely
assumes that each word is related to all the topics. This
incorrect model results in high likelihoods for words that
are not related to topics. It also results in severely
overlapping distributions of words for different topics.

Here we describe a new method that assumes from the
start that documents (we use “stories” from now on)
have several topics. We have adopted a mixture model
of words given the topics of a story as a more realistic
model of language. This allows us to distinguish a large
number of diverse topics more easily.

In Section 2, we review the traditional model and then
describe the new model. In Section 3, we explain how
the model parameters are estimated. We present the
classification (decoding) algorithm in Section 4,
including a 2-pass approximation that reduces the
computation needed. Finally, we present some large-
scale experiments comparing the two methods on
Broadcast News in Section 5.

2. GENERATIVE TOPIC MODELS

First, we present an interpretation of both the traditional
likelihood model and the new model as simple finite
state (hidden Markov) models. What we call the
traditional method [1-6] starts by counting the number of
occurrences of each word in stories with each of the
topics. This allows us to estimate the a priori
probability of each topic label, P( Tj), the conditional

likelihood of each word given the topic, p(W,, ITj), and
the unconditioned probability of each word, p(W,,).

Using Bayes’ rule and the assumption that the words in
the story (W K Wy) are independent, we get the

posterior probability of the topic given the words

P(W, 1 T})
P(W,)

There are two obvious problems with this formula.
First, some words are clearly not related to any topic.
Common “stop” words can be eliminated. Effective
keywords can also be selected using a XZ test [1]. The
second problem is that if one of the words that occurs in
a test passage has never occurred in the training
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examples for that topic, the resulting product will be
zero. This is easily solved by preventing the
probabilities from being zero. McDonough showed in
[3] that interpolating the conditional likelihoods with the
unconditioned likelihoods as in (2) works as well as
keyword selection.

P(Wy, | Tj) = 3 P(W, | T)) + 1 P(W,) )

Here we interpolated the probabilities using [7]. The
traditional model can also be viewed as a very simple
hidden Markov model (HMM) model that generates the
words, given a topic. Figure 1a illustrates such a model.
First, we choose the topic of the story based on the a
priori probabilities for topics. Then, given that topic,
we go to a state that generates words according to their
conditional likelihoods for the chosen topic. We
continue to choose words until the story is over. It is
obvious that this model does not easily generalize to the
case of more than one topic for a story. And we must
assume that all of the words are related to all of the
topics (which is clearly not a good model of language).
When we estimate the conditional likelihoods, many
words are (falsely) associated with many topics,
resulting in topic dependent word distributions that
overlap considerably, making it hard to distinguish
topics in new (test) stories. In addition, the vast majority
of the words in a story, which are not really related to
any particular topic, are shared (but not equally) in all of
the topic models.
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Figure 1: HMMs for (a) the traditional and (b) the new model

Figure 1b illustrates the new model we have adopted.
First, to generate a story, we must choose the set of
topics for the story according to the probabilities of
different sets. Note that we always add the special topic
of General Language, 7, to the set of chosen topics.
Then, given the set of topics, we choose the topic (or
General Language model) that will generate the first

word, according to P( T] | Set ), the probability that the
next word will be about Tj., given the set of topics. A
word is then generated according to P(W; | T] ), which is
now interpreted as the probability of W, given that it is a

word related to topic j. Then, we loop back to where we
must choose the topic for the next word. This model
clearly allows different words to be about different
topics, and also allows us to model (rather than discard)
the words that are related to General Language.

3. MODEL ESTIMATION (TRAINING)

To estimate the traditional model we simply count the
number of occurrences of each word in stories that have
each of the topic labels assigned, and then normalize the
counts to form probability distributions. We smooth the
distributions [7] to avoid estimation problems. To
estimate the parameters of the new model, we must use
the Estimate-Maximize (EM) algorithm because,
although we know the set of topics assigned to a story,
we do not know which of the words is related to each of
the topics. We find the parameters (bothP( T]-ISet) and

P( WtITj) ) that maximize the likelihood of the observed
words given the sets of topics in the training.

We initialize P( T]-IS et) to the a priori probability of the
topics. P(1p | Set)is initialized with a probability of 1.
Note that this means the probabilities of choosing the
next word do not sum to 1. Therefore we rescale them

for each story so that they sum to 1. We also initialize
the P(WtITj) to those obtained from the traditional

algorithm. Given the model structure shown in Figure
1b, the probability of a particular word given the set of
topics is

P(W, | Set) = Z[P(Tj | Se)P(W, | Tj)] 3)
jeSet

The EM algorithm dictates that we must distribute the
count for this word in the training among the possible
topics.
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The counts for words given topics are normalized to
produce new estimates of word distributions.

C(W,, 1 T))
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P(Tj | j € Set), the average percentage of words

generated by a topic state given it is in the set of topics,
is found by dividing all the counts for that topic by the
number of words in stories with that topic label.

Y cow, 11y
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4. CLASSIFICATION (DECODING)

In the conventional method, we compute the log
posterior probability of each topic, where ¢ is optimized
to adjust for the incorrect independence assumption.

P(W, | Tj)} o
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t

To decode with the new method, we must, in principle,
consider all possible sets of topics, and compute
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P(T]-ISet) are derived by scaling the P(7; 1 j € Set)to

sum to 1 for each set considered. The exponential
weight, 8, is used to counteract the effects of the
incorrect independence assumption. This is clearly not
feasible when there are several thousand topics. Instead
we first consider each topic independently using (9) to
choose a small set of likely topics. Then we can rescore
all subsets of the top-N topics using (9).

log P(Tj | Story) = log P(Tj) +
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The new model in (8) avoids the problem of some words
being unobserved for a particular topic, because the
probability for each word is the sum over the topics in
the set. So if one of the topic models has a low
probability, then perhaps another will have a higher
probability. However, when we train the models using
this assumption, each topic is effectively trained on only
a relatively small number of words. When we use (9) to
score topics independently, we violate the assumptions
of the new model. The majority of the words, which are
related to General Language or other topics, will have a
very low probability for the topic we are considering.
To avoid this effect, we use a simple filter function, ¢,

_xif (x20) 10
¢(x)_{o if (x<0) (10)

so we ignore all words with negative likelihood ratios.

After finding a small number of topics that have high
scores, we could consider all 2"-/ subsets of those topics
explicitly using (8). We approximated the probability of
the set of topics by the product of the joint probabilities
of all of the pairs of topics in the set. To avoid a bias for
smaller sets, we de-exponentiated the product by the
number of terms used.
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5. EXPERIMENTS

5.1. Corpus

We performed experiments on a corpus of broadcast
news transcribed by Primary Source Media available on
CDROM]I8]. Although the corpus contains over 4 years
of transcriptions, we used only 1 year, since that resulted
in higher accuracy (topics changed considerably over
time). Each story has from 1 to 13 topic labels
(depending on the completeness of the person who
annotated the data), for an average of 4.5 topics per
story. The training data contained 42,502 stories from
July 1995 through June 1996. The test data consisted of
989 stories from the first half of July, 1996. The stories
averaged about 1,000 words in length, but varied
considerably. Even in this one year training period,
there were over 5,000 unique topic labels.

5.2, Training

We estimated models for the 4,627 topic labels that
occurred more than once. About 2.5% of the topic labels
that appeared in the test stories never occurred in these
4,627 labels and so they could not be found. We
removed 215 “stop” words (from a list in [9]) and
removed suffixes like “ing” and “ed” using an algorithm
like Porter’s [10]. The 42,502 training stories contained
95,597 unique words after these changes. The average
number of unique words in each topic was about 3,000,
but it varied greatly depending on the number of training
stories for each topic.

As predicted, the new model results in sharper more
distinguished distributions. Table la shows the
probabilities of the most likely words for the topic
“Clinton, Bill” using the traditional model. The words
“Clinton” and “president” are clearly. However, the
words “go”, “think”, and “say” are not directly related —
they are just common words. Table 1b shows the most
likely words after EM training. The first four words are
clearly relevant, and are 10 times more likely than
before, while “go” and “think” are much less likely.

Rank Word P(W | T)||Rank Word P(W|T)

1 president 0.013 1 president 0.104

2 go 0.011 2 Clinton 0.096

3  think 0.010 3 house 0.036

4  Clinton 0.009 4 white 0.034

5 say 0.008 . . .
36  go 0.003
44 think 0.003

a) Traditional Model b) New Method

Table 1: Word likelihoods for the topic
“Clinton, Bill”.



Topic P (T| Set)
General English 0.935
Music, Black 0.085

Politics and government | 0.018
Clinton, Bill 0.020
Politics and government | 0.018

Table 2: Percentage of words produced by some topics.

Table 2 shows the average percentage of words that are
directly related to the topic for a few topics. The
General Language model accounts for 93.5% of the
words, while for most other topics, only a few percent of
the words are about that topic.

5.3. Classification Results

Figure 2 shows the classification results comparing the
traditional and the new method, scoring topics
independently. Based on preliminary experiments, we
used =0.25 and $=0.35. For the basic experiments, the
number of topics chosen was varied from 1 to 5. The
precision is the percentage of topics chosen that are
among the topics annotated manually. The “at-least-one
accuracy” shows the percentage of stories in which at
least one of the topics found was among the annotated
topics. As can be seen, the precision of the new method
is considerably higher than that of the traditional
method. In particular, the precision of the top choice
increases from 63.6% to 75.7%. When we examined a
few errors (for both methods), we found that, in many
cases, the topics chosen by the algorithm were indeed
relevant. Perhaps it was difficult for unaided human
annotators to remember 5,000 labels.

We also applied the full scoring method using (8) and
(11) with the greedy algorithm described. This was
often able to remove one or two topics that were not
consistent with the others, thus increasing the precision
of the 4th and 5th choices. However, the effect, as
shown in Figure 2, was not dramatic. Perhaps a better
model of dependence would improve this rescoring step.

In a later experiment to understand the contributions of
the new model, we ran an experiment in which we
omitted the General Language model, 7, but kept the

mixture model. We found that half of the gain in the
new method was due to having the General Language
model, and half was due to the use of a mixture model.

6. CONCLUSIONS

We have described a new method for topic classification
that models topics within documents more realistically.
It accounts for the facts that most stories have several
topics, with different words related to different topics,
and that most of the words in stories are not directly
related to any of the topics. Experiments on broadcast
news transcriptions with 5,000 topics, verified that the
word distributions obtained were more distinguished,
and that classification results were significantly
improved.
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Figure 2: Comparison of Topic Classification Accuracy
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