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ABSTRACT

This paper extends previous work exploring the use of
Subsequential Transducers to perform speech-input trans-
lation in limited-domain tasks. This is done following
an integrated approach in which a Subsequential Trans-
ducer replaces the input-language model of a conventional
speech recognition system, and is used both as language
and translation model. This way, the search for the recog-
nised sentence also produces the corresponding transla-
tion. A corpus-based approach is adopted in order to build
the required models from training data. Experimental re-
sults are presented for the translation task considered in
the EUTRANS project: one in the hotel domain with more
than 500 words per language and language perplexities
near to 10.

1. INTRODUCTION

A Subsequential Transducer (SST) is a deterministic
finite-state machine that accepts sentences from a given
input language and produces associated sentences of an
output language [1]. Speech-input language translation
by means of SSTs can be done following an integrated
approach in which the input-language model of a conven-
tional speech recognition system [2] is replaced by a SST,
which is used both as language and translation model.
This way, the search for the recognised sentence also pro-
duces the corresponding translation [3].

A Corpus-Based (CB) approach can be adopted in order to
build the required SSTs from training data. Different CB
approaches to Machine Translation (MT) have emerged
in the last few years [4–8] as an alternative to more tra-
ditional, knowledge-based systems. An important advan-
tage of SSTs is that they can be automatically learnt from a
representative set of training examples (consisting in pairs

Work partially funded by the Spanish C.I.C.Y.T. (project TIC95-
0984-C02) and by the European Union (ESPRIT project no. 20268).

of sentences that are translations of each other). If the
corresponding function is total, the algorithm known as
OSTIA [9] can be used. If the function is partial and a fi-
nite state model restricting its domain (input language)—
and possibly other for its range (output language)—is pro-
vided, an extension of OSTIA known as OSTIA-DR [10]
can be employed. The incorporation of input and output
language restrictions while learning the SSTs becomes es-
pecially important when the SSTs are going to be used
both as language and translation models [3]. In particu-
lar, the domain and range models used with OSTIA-DR
can be stochastic -testable automata, or equivalently -
grams [11].

The use of automatically learnt SSTs for limited-domain
translation tasks showed useful performance in prelim-
inary experiments with an academic task involving de-
scriptions of visual scenes [3, 12]. In order to deal with
more complex tasks, some extensions to our basic speech-
to-speech translation system have been implemented. In
particular, acoustic modelling has been improved by using
continous-density (instead of discrete) Hidden Markov
Models (HMMs) and the grouping of some words and
word sequences into categories has been introduced in or-
der to enhance the SST learning process. In this work,
the translation system built in that way is tested upon a
speech-input translation task in the hotel domain.

2. WORD CATEGORIES

The approach presented in [13] for the integration of cate-
gories with SSTs proved that their use is very effective in
reducing the size of the final transducers and the amount
of training data needed. However, this approach was not
easily integrable in a speech recognition system and did
not consider the possibility of having categories including
units larger than a word (like numbers).

The approach presented here circunvents these problems
creating a single SST that comtains all the information



necessary for the translation, including the basic transduc-
ers for the categories. The main steps are:

A set of categories is identified.

The training corpus is categorized accordingly and
used for training an initial model.

For each category, a simple SST is built.

The arcs in the initial model corresponding to the
different categories are expanded using these simple
SSTs.

Seven categories were used: masculine names, femenine
names, surnames, dates, hours, room numbers and general
numbers. These categories follow quite simple translation
rules and the amount of linguistic knowledge introduced
by them is very low.

The categorization of the corpus was done by replacing
the words and word sequences by adequate labels and us-
ing this labelled corpus as training material. This implies
that the corresponding SST had arcs labelled by category
names instead of vocabulary words. In principle, it is pos-
sible to expand the transducers for the categories in the
corresponding arcs so that the final translation is obtained
directly, but this expansion can be complex and generate
too large models. The approach we followed was to keep
the labels in the translation together with information on
their substitution. For example, let us suppose the Spanish
sentence:

Por favor, dénos las llaves de la doscientos vein-
tidós.

Then, the expanded SST will produce:

Please give us the keys to room number $ROOM
$ROOM=[two two two].

A simple postprocess is used to obtain the final translation.
A more detailed explanation of the process can be found
in [14].

3. THE TRAVELER TASK

The Traveler task [15] was defined within the EUTRANS

project [8] in order to be a more realistic test for our CB
MT techniques than that we previously employed [12].
This task is aimed at both being realistic and allowing
fast, cost-effective, automatic data generation. The gen-
eral framework adopted for the task is that of a traveler
(tourist) visiting a foreign country whose language he/she
does not speak. This framework includes a great variety of
different translation scenarios, and thus results appropri-
ate for progressive experimentation with increasing level

of complexity. In a first phase, the scenario has been lim-
ited to some human-to-human communication situations
in the reception of a hotel:

Asking for rooms, wake-up calls, keys, the bill, a taxi
and moving the luggage.

Asking about rooms (availability, features, price).

Having a look at rooms, complaining about and
changing them.

Notifying a previous reservation.

Notifying the departure.

Asking and complaining about the bill.

Signing the registration form.

Other common expressions.

The Traveler task text-to-text corpora are sets of pairs
each of which consists in a sentence in the input language
and the corresponding translation in the output language.
These sets were automatically built, since automatic gen-
eration allows the obtainment of paired samples in a large
enough quantity for making CB MT experiments possi-
ble [16]. Moreover, the complexity of the task can be con-
trolled. On that score, the existing MT corpora are either
too restricted (such as those related to the Miniature Lan-
guage Acquisition task originally introduced in [17] and
adequately reformulated later as a MT task [12]) or unre-
stricted data (such as the Hansard corpora [4]).

In order to generate Spanish-to-English text-to-text data
for the Traveler task, a set of Stochastic, Syntax-directed
Translation Schemata (SSTSs) [18] was developed. These
SSTSs were then used to automatically generate a huge
corpus of pairs of sentences through a data generation
tool, specially developed for the EUTRANS project. This
software allows the use of several syntactic extensions to
SSTS specifications in order to express optional rules, per-
mutation of phrases, concordance (of gender, number and
case), etc.

Some examples of the resulting Spanish-to-English trans-
lations are shown in Figure 1, and Table 1 summarizes
the main features of this corpus. For each language, the
test set perplexity has been computed by training a tri-
gram model (with simple flat smoothing) using a set of
20,000 random sentences and computing the probabilities
yielded by this model for a set of 10,000 independent ran-
dom sentences. The lower perplexity of the output lan-
guage derives from a design decision: multiple variants of
the input sentences were introduced to account for differ-
ent ways of expressing the same idea, but they were given
the same translation.

Finally, a speech corpus for the task was built. A total
436 Spanish sentences were selected from the text corpus.
They were divided into eleven sets:



Spanish: Quisiéramos reservar dos habitaciones para un dı́a a nombre de Federico Mestre, por favor.
English: We want to book two rooms for a day for Federico Mestre, please.
Spanish: Por favor, dénos las llaves de la doscientos veintidós.
English: Please give us the keys to room number two two two.
Spanish: ¿Cuánto cuesta por dı́a una habitación doble con pensión completa?
English: How much does a double room with full board cost per day?

Figure 1: Some examples of Spanish-to-English translations in the Traveler task.

Table 1: Main features of the Spanish-to-English text cor-
pus.

Spanish English
Vocabulary size 689 514
Average sentence length 9.5 9.8
Test-set perplexity 13.8 7.0
Sentence pairs (Different) 500,000 (171,481)

One common set consisting of 16 sentences.

Ten sets of 42 sentences.

Each of the twenty speakers (ten male and ten female) par-
ticipating in the acquisition of this corpus, pronounced the
common set and two out of the other ten, totalling 2,000
sentences, 15,360 words and about 90,000 phones. The
sampling frequency was 16 kHz.

From this speech corpus, two subcorpora were extracted:

Training and adaptation (TravTR): 16 speakers (eight
male and eight female), 268 sentences, 1,264 utter-
ances (aprox. 11,000 words or 56,000 phones).

Speaker independent test (TravSI): 4 speakers (two
male and two female, not in TravTR), 84 sentences
(not in TravTR), 336 utterances (aprox. 3,000 words
or 15,000 phones).

4. EXPERIMENTAL RESULTS

In the experimental results presented here, each word of
the Spanish vocabulary has been modelled as a simple
concatenation of phones (from a set of 31 that includes
stressed and unstressed vowels plus two types of silence),
which in Spanish can be derived from standard phonetic
rules. The acoustic modelling of these phones has been
carried out using context-independent continuous-density
HMMs [19–21] whose parameters had been estimated us-
ing the union of two corpora: the 1,264 utterances of the
TravTR subcorpus, together with a small set of 1,530 ut-
terances (by 9 speakers, 4 male and 5 female) from a
different task that was designed in order to have a quasi
phonetically-balanced corpus. This speech material was
processed to obtain, each 10 msecs, 10 cepstral coeffi-
cients of a Mel-filter bank plus the energy and the cor-
responding first and second derivatives. A training set of

Table 2: Spanish-to-English speech-input recognition and
translation results.

Number of Recognition Translation
Gaussians AMBF WER WER RTF

1,663 300 2.7 % 2.3 % 5.9
150 6.6 % 6.4 % 2.2

5,590 300 2.2 % 1.9 % 11.3
150 6.7 % 6.3 % 5.6

168,629 different Spanish-to-English (text) sentence pairs
from the Traveler task was used to automatically learn -
gram models for the input and output languages. A SST
was then learnt with OSTIA-DR using these input and out-
put -grams and the same training pairs.

The system was afterwards used to recognise and trans-
late into English the 336 Spanish utterances of the TravSI
subcorpus . The search was performed using the Viterbi
algorithm with a beam search at two levels: independent
beam widths were used in the states of the SST (Lan-
guage Model Beam Width—LMBW) and in the states of
the HMMs (Acoustic Model Beam Width—AMBW). The
scores obtained in the two levels were linearly combined
in the log scale using empirically obtained factors. The
LMBW was empirically fixed at 300. Table 2 presents the
recognition and translation Word Error Rate (WER) and
Real Time Factor (RTF) achieved on a HP-9735 worksta-
tion, for different number of Gaussian distributions and
different AMBFs.

Thanks to the lower perplexity of the output language and
to the integrated approach here adopted (in contrast with
traditional decoupled approaches in which the output of
a speech recogniser is submitted to a different translation
module) the translation WER is slightly lower than the
recognition WER. Also, there is a clear tradeoff between
computing time and accuracy. For the models with 1,663
Gaussian distributions and tight beam-search thresholds,
the recognition and translation computing-time is only 2.2
times real time without resorting to any type of specialised
hardware or signal processing device. This configuration
provides an acceptable behaviour for on-line operation.
For off-line operation, a different configuration can pro-
vide improved performance at the cost of increasing the
RTF.

It is worth noting that the speakers and sentences used in training
the translation and acoustic models are disjoint from those in TravSI.



5. CONCLUSION

The use of SSTs allows the integration of acoustic and
translation models in the building of speech-to-speech
translation systems for medium sized tasks. Good recog-
nition rates are achieved by using continuous HMMs and
more compact SSTs are obtained by using categories, for
words and word sequences, in the training corpora.

Future directions include reducing the number of sen-
tences necessary for training the translation models in or-
der to cope with spontaneous instead of synthetic sen-
tences. For this, new approaches are being explored, like
reordering the words in the translations, the use of new
inference algorithms, and automatic categorization.
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