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ABSTRACT

We consider translating natural language sen-
tences into a formal language using a system that
is data-driven and built automatically from train-
ing data. We use features that capture correlations
between automatically determined key phrases in
both languages. The features and their associ-
ated weights are selected using a training cor-
pus of matched pairs of source and target lan-
guage sentences to maximize the entropy of the
resulting conditional probability model. Given a
source-language sentence, we select as the trans-
lation a target-language candidate to which the
model assigns maximum probability. We report
results in Air Travel Information System (ATIS)
domain.

1. INTRODUCTION

Our interest is in developing a statistical transla-
tion system that translates source language sen-
tences into target language sentences. The main
consideration is that the system be fully data-
driven and be built automatically from the train-
ing data. Such systems can be ported easily to
new domains since they do not use domain-specific
rules developed by experts.

Principally, we consider the case when the source
language is a natural language in a restricted do-
main and the target language is an artificial (for-
mal) language. Such cases arise in building natural
language interfaces to applications such as word-
processors, email-managers, data-bases, or auto-
matic teller machines. The formal language ex-
presses operations that the applications can per-
form.

We apply our techniques to Air Travel Infor-
mation System (ATIS) domain. In ATIS, one
is interested in translating English queries on air
travel information (flights, fares, airlines, ground-
transport etc) into a formal language that can be
translated deterministically into a database query.
The data for ATIS was collected in an ARPA-
sponsored program [1].

We have at our disposal several thousands of
English queries and their man-made formal lan-
guage translations. These pairs of English and
formal sentences form what is called the training
corpus. Some examples from the training corpus
follow:

S1: show me all the nonstop flights from city-1 to
city-2 leaving city-1 after time-1 on date-1 .

Ty: LIST FLIGHTS NONSTOP DEPARTING AFTER
TIME-1 FLYING-ON DATE-1 FROM:CITY CITY-1
TO:CITY CITY-2

Syt what are the available flights on air-1 from
city-1 to city-2 the evening of date-1 .

T5: LIST FLIGHTS AIR-1 EVENING FLYING-ON
DATE-1 FROM:CITY CITY-1 TO:CITY CITY-2

Statistical translation models are used to trans-
late a new (unseen in the training corpus) source
sentence S in the following natural way: Evalu-
ate conditional probability P(T|S) for all T' in the
target language space and select as the transla-
tion that T which maximizes P(T'|S). Parameters
of these models are “trained” from the training
corpus.

Statistical translation models were invented at
IBM by Brown, et al [2] in the context of French
to English translation. These models are based on
a source-channel paradigm. The source-channel
paradigm uses two component models: 1. P(S|T)
called the channel model, and 2. P(T) called
the language model (or source model). The
two component models are then used to compute
P(T|S) = P(S|T)P(T)/P(S); then that T which
maximizes the product P(S|T)P(T) is chosen as
the translation of the input sentence S. The chan-
nel model can also be thought of a translation
model, but from target to source. Each of the com-
ponent models is estimated independently. These
a priori models were first applied to natural lan-
guage understanding in (3] for extracting the full
meaning of a context-independent sentence in the
ATIS domain. The system was built automatically
from the training data.



source-channel model for automatically construct-
ing a language understanding system from train-
ing data; we build a direct model of the a poste-
riori conditional distribution P(T'|S). The direct
model uses features that capture translation ef-
fects and language model effects in a unified frame-
work; the selection of features is fully data-driven.
The model is powerful in that it can handle a va-
riety of features involving phrases, words, parses,
and long-distance relations in the source and tar-
get sentences. Substantially more general align-
ments, which treat the two languages more sym-
metrically, are possible here than in [3]. Neither
explicit manual labeling of important words nor
explicit intrasentence segmentation of the training
data nor rule-based transformations are required,
unlike in [4] - [5]. Our approach is also dissimilar
to the decision-tree based approach for language
understanding [6].

The model we describe here is built on top of a
given prior distribution Pp(T|.S). The prior could
be uniform, or could be a decision tree, or any
probabilistic model. The model can be seen as a
correction to the prior relative to a set of feature
functions.

2.1. Features

Although the method we describe is applicable
when feature functions are real-valued, we consider
only binary-valued feature functions here. So a
feature maps the product set of source and target
language sentences to 0 or 1. We now give con-
crete examples of features that we consider. To
this end, first consider some sample English and
Formal sentences. The formal sentences are not
translations of the English sentences.

E,: what are least expensive flights from city-1 to
city-2.
E,: what flights do you have from city-1 to city-2.

Fy: LIST FLIGHTS MORNING EARLIEST-ARRIVING
FROM:CITY CITY-1 TO:CITY CITY-2

F,: LIST FLIGHTS CHEAPEST FROM:CITY CITY-1
TO:CITY CITY-2

One of type of feature we considered is a phrase-

feature of the form

1lifseSteT
for(8,T) = { 0 else.

Such features model the fact that certain phrases
in source language sentences tend to co-occur with

feast expensive, CHEAPEST

fires on (E,, F3), but not on (E,, F;) or (Ey, Fy).

A special case with a null s-phrase results in fea-
tures that effect target language modeling. Such
features obviate the need to estimate target lan-
guage model separately, as is the case with source-
channel models [2] -[3]. A variation of a phrase
feature is one which ignores the order of words in
s-phrase and t-phrase. Another is a long-distance
bigram feature.

Given an English query, there are often compet-
ing formal candidates that differ with each other
minimally: one may have an extra word (phrase)
relative to another. Of course, conversely, a phrase
may be missing in one relative to the other. We
need features that differentiate such candidates.
A feature that looks for existence of words in the
target sentence that do not have an “informant”
in the source sentence serves this purpose. Such
words are deemed to be spurious in a formal can-
didate. An example feature is one that looks for
the word “cHEAPEST” in Formal in the absense of
“lowest” and “cheapest” in English. This feature
fires on (E,, F3) but not on (Eq, F;). Another type
of a feature looks for absence of words or phrases
in the target sentence that ought to explain “infor-
mants” in the source sentence. An example feature
is one that fires if the word “CHEAPEST” is absent
in Formal while “lowest” or “cheapest” or “least
expensive” is present in English. This feature fires
on (E;, Fy) but not on (Ey, F»).

2.2. Feature Selection and Optimization

We described a variety of features so far. Let
#(S,T) be a vector feature of dimension n.
Clearly, how many times the component features
are true on the training data is of interest. Let P

be the empirical distribution of the training corpus
and define

d:=Y P(S,T)$(S,T).

ST

We are then interested in a conditional distribu-
tion P(T|S) that satisfies

S B(S) Y P(TIS)HS, T) = d,

and is as close to the prior as possible.

The following Kullback-Leibler-like pseudomet-
ric D(-,-) quantifies the notion of closeness be-
tween any two conditional distributions P; and Ps:



oo T T eeed N e T 7

(o)

We have the following (primal) optimization
problem:

min D(P, Py)
subject to
Y- B(5)D_P(TIS)(S,T) = d.
5 T

This optimization problem gives rise to models
P of the form
PO(T|S)e>‘¢(5'T)

Z(S)

with the normalization factor

Z(8):=_ Po(T|S)e*>T).
T

P¢’)\(TIS) =

The (dual) optimization problem is posed in R™
and the optimal solution is described by the opti-
mal A, € R*. This (convex) optimization problem
is standard. We use Improved Iterative Scaling [7]
to solve it. When the prior is uniform, the opti-
mal solution to this problem also maximizes the
likelihood of training data and the entropy of the
model.
With a; := e*+, we can rewrite the above as

Po(T|S) a5
Z(5)

In this formulation, we see that each feature that
is true (i.e. takes the value 1) gets a multiplicative
“vote” a; to modify the prior score Po(T|S).

We now describe feature selection. First, we as-
sume that a set of n features ¢ have already been
selected somehow. We then solve the optimization
problem described above. Then, D,, the minimum
achieved by X,, is a figure of merit of the fea-
ture set {¢1,---,d,}. Once the set {¢;, -, ¢Pn}
is selected, we compute D, for {¢;, b2, -, dn, f}
for all features f in the remaining pool and rank
the features by the new D,. We can then add
the top-ranking feature as ¢, ,; to the set of fea-
tures already selected and find the optimal weights
A1, Az, -y Anp1. Thus, in principle, we can start
with n = 0 and build a good feature set by increas-
ing the set by 1 in each batch. In practice, we add
top k-ranking new features in each batch to the
features already selected. The figure of merit D,
increases monotonically with the size of the feature
set. We stop feature selection when the increment
is marginal.

P(T|S) =

LNgHsI quelies. yvye uscld oLZ{ pPalls Ol CONLEXL-
independent sentences from the ATIS training
data. Examples of features that our system se-
lected are shown below along with their near-
optimal weights.

Source Phrase Target Phrase 04
arrive PLIGHTS ARRIVING-ON 39
about AROUND 2900
late-afternoon LATE-AFTERNOON 56000

cheapest round-trip | FARES CHEAPEST ROUND-TRIP 43

including ALONG-WITH 280

ATIS data also contains test sets, which are out-
side the training corpus. These are DEV94 (to
test models during development) and DEC93 and
DEC94 (actual evaluation sets). We report re-
sults on context-independent queries from these
test sets. Translation performance is measured by
Common Answer Specification, a metric defined
by ARPA in terms of response from air travel data-
base.

While D, increases monotonically with the num-
ber of features, performance of the translator on
a held-out test set may not. A typical movement
of DEV94 performance with number of features is
shown below:
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Figure 1. Performance vs number of features

The following results are a good improvement
over those of previous automatic statistical trans-
lation systems.

DEV94
84.63

DEC93
86.83

DEC9%4
85.84
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