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ABSTRACT
Context-dependent models for language units are essential in
high-accuracy speech recognition. However, standard speech
recognition frameworks are based on the substitution of lower-
level models for higher-level units. Since substitution cannot
express context-dependency constraints, actual recognizers use
restrictive model-structure assumptions and specialized code for
context-dependent models, leading to decreased flexibility and
lost opportunities for automatic model optimization. Instead, we
propose a recognition framework that builds in the possibility of
context dependency from the start by using weighted finite-state
transduction rather than substitution. The framework is imple-
mented with a general demand-driven transducer composition
algorithm that allows great flexibility in model structure, form
of context dependency and network expansion method, while
achieving competitive recognition performance.

1. INTRODUCTION
1.1. The Substitution Architecture
In the standard architecture for a speech recognizer, the various
levels of linguistic information — language model, word pro-
nunciations, phone models — are represented by acascadeof
networks linked by a single operation ofsubstitution. Each net-
work at a given level accepts (emits) sequencesof symbols. Each
of those symbols is modeled by a network at the level imme-
diately below [1]. For instance, the network in Figure 1a is a
(very small) finite-statelanguage model, with the words along
each complete path specifying a legal word sequence and the
product of the path arc probabilities giving the likelihood of that
word sequence. The network in Figure 1b gives the possible pro-
nunciations of one of the words in the language model, “data”,
with the phones along each complete path specifying a legal pro-
nunciation and the product of path arc probabilities giving the
likelihood of that pronunciation. Finally, the network in Figure
1c represents a hidden Markov model (HMM) for one phone,
with the labels along a complete path specifying legal sequences
of acoustic distributions for that phone. The legal sequences of
acoustic distributions for an entire word sequence can be found
by substitutingeach word in the language model by its pronun-
ciation network, and then each phone in the resulting phone net-
work by its HMM, and multiplying probabilities appropriately;
the weights of the network substituted for a particular unit are of
course are scaled by the weight given to the unit in the higher-
level model.
This architecture allows a wide range of implementations. In
principle, a cascadecan be expandedin advance into a single net-
work accepting sequences of the lowest-level units (VQ or con-
tinuous density labels) by applying recursively the substitution
of a symbol by a network. However, if the networks involved
are large, full expansion may not be desirable, since the result-
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Figure 1: Recognition network cascade. By convention, the
initial state (or node) is represented by a bold circle, the fi-
nal states by double circles, andtransition (or arc) labels by
symbol=probability .

ing network may be very large. Instead, a typical recognizer will
use a hybrid policy in which some levels are fully expanded but
others may be expandedon demand. In such a recognizer, se-
quences of hypotheses of units at levell are assembled until they
correspond to paths from an initial state to a final state in some
model of a unit of levell + 1, at which point that higher-level
unit is hypothesized.

1.2. Context-dependency
The substitution architecture works well so long as the choice
of level l model to be substituted for a unit at levell + 1 does
not depend on the surrounding levell+ 1 units. However, high-
performance recognition requires the use ofcontext-dependent
unitsat appropriate levels of representation [9, 19]. By its very
nature, a context-dependent modelu=c for unit u in contextc
can be substituted for an instance ofu only when that instance
appears in contextc. How to substitute for the appropriate con-
texts in isolated strings is immediate, since the left and right con-
texts are unique. Doing so for general networks is less immedi-
ate, however, because a particular unit may be surrounded by
several distinct contexts, represented by multiple incoming and
outgoing paths in the network. Existing recognition algorithms
address this problem in three main ways:
No cross-word models: Models for word-internal phones may
depend on surrounding phones, but models for word-initial
(word-final) phones are allowed to depend only on right (left)
context. Pronunciations are restricted to single or multiple string
representations (unlike Figure 1b). Therefore, the context for a
pronunciation of a word can be easily determined.
Restricted contexts: The recognition algorithm is engineered
to accommodate specific network structures and context-
dependency schemes, for instance triphonic models and bigram
language models. Either the full expansion is done off-line (usu-
ally for smaller networks) or is done dynamically inside the
decoder [4]. This approach has the obvious disadvantage that



contexts or networks outside the assumed restrictions cannot be
used. A less obvious disadvantage is that the specialized algo-
rithms actually hide the underlying simplicity of the more gen-
eral problem and its algorithmic solution, as we shall see below.

Restricted expansion: By expanding the network as a tree
rather than as the more usual graph, each partial phonetic hy-
pothesis can be developed as a string, making context-dependent
substitution straightforward [15]. A potential disadvantage is
that tree expansions contain in general repeated subtrees and
may thus be less efficient in time and space than a standard net-
work representation in which a single subnetwork corresponds
to the repeated subtrees.
In contrast to the previous algorithms, our approach allows any
finite-state model of context to be used in a general class of
decoding cascades, without requiring specialized decoders, re-
stricted contexts or tree expansion. Furthermore, it can be used
to build a network either statically outside the decoder or dy-
namically inside the decoder. The approach is based on two fun-
damental ingredients we describe below: a simple generaliza-
tion, weighted finite-state transducers, of existing network mod-
els, andon-demand composition, a novel technique for network
combination.

2. WEIGHTED FINITE-STATE TRANSDUCERS
Network models are typically given as HMMs, or equivalently
asweighted finite-state automata(WFSAs). Each transition in
a WFSA is labeled with the symbol accepted (emitted) by the
transition and with the weight of the transition, which in speech
recognition applications represents a probability. Each path from
an initial state to a final state assigns to the sequence of path tran-
sition labels theaccumulated path weight (product of transition
probabilities).1 In essence, a WFSA represents a mapping from
symbol sequences to weights [3, 16].
In WFSA terms, substitution corresponds to replacing each arc
labeled with unitu by a copy of the WFSA that modelsu in
terms of lower-level units. The correspondencebetween WFSAs
at levell and labels at levell+1 is only implicit with this scheme.
It can be made explicit by using finite-state transducers.
Weighted finite-state transducers(WFSTs) generalize WFSAs
by replacing the single arc label by a pairi : o of an input la-
bel i and an output labelo. Each path from an initial state to
a final state in a transducer associates the sequence formed by
the input labels along the path's arcs to the sequence formed by
their output labels, and assigns to this correspondence the accu-
mulated weight (product of probabilities) of the path's arcs. In
essence, a WFST represents a binary relation between symbol
sequences and their associated weights [2, 8, 16].2 In both WF-
SAs and WFSTs, the transition label� represents a null input or
output.

The correspondence between two modeling levelsl and l + 1

is readily represented by a weighted transducer that reads se-
quences of levell units and outputs sequences of levell + 1

units. For instance, the transducer in Figure 2b represents a (very
small) pronunciation lexicon. It gives a mapping from phone
sequences to words in the lexicon, in this example “data” and
“dew,” with probabilities representing the likelihoods of alterna-
tive pronunciations. This transducer encodes (the inverse of) the
substitution ofphone sequences for words. Since a word pro-
nunciation may be a sequence of several phones, the path corre-
sponding to each pronunciation has� output labels on all but the

1For numerical stability, implementations often replace arc probabili-
ties with log probabilities and theaccumulated weight of a path becomes
the sum of the log probabilities of the path's arcs.

2In general, several paths may relate a given input sequence to possi-
bly distinct output sequences.
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Figure 2: Recognition transducer cascade

word-initial arc.
It is convenient to represent the top level of the cascade also as
a transducer. In Figure 2a, a language model is represented by a
transducer by simply having the input and output labels of each
transition be the same.

The examples in Figure 2 encode (a superset of) the information
in the WFSAs of Figure 1a,b as WFSTs. A transducer corre-
sponding to the WFSA in Figure 1c can be constructed in the
same way as the transducer in Figure 2b.

The advantages of the transducer representation may not be ap-
parent in these simple examples. Figure 3 demonstrates one ad-
vantage — the opportunity for theminimization of networks,
which can save both space and time in use. The transducer in
Figure 3 isequivalentto the transducer in Figure 2b, but has
fewer states and arcs. We call two WFSTs equivalent if they
relate the same complete input sequences to the same output se-
quences with the same accumulated weights. Under this defini-
tion of equivalence, output labels may be moved between transi-
tions and transition weights adjusted so long as the totalaccumu-
lated probability for a given pronunciation is preserved. While
two transducers may be algebraically equivalent in this sense,
they clearly may differ in their effect on recognition speed and
space. Under suitable conditions [5, 11] we can define themin-
imal (fewest states) transducer equivalent to a given transducer,
which can be computed with recent algorithms [10, 13] that ex-
tend the classical finite-state minimization algorithms [6]. The
transducer in Figure 3 is minimal in this sense. Note for this ex-
ample some output labels but no weights have been redistributed.

2.1. Context-dependency transducers
A major advantage of transducers for speech recognition is
that they generalize naturally the notion of context-independent
substitution to the context-dependent case. The transducer
of Figure 4a does not correspond to a simple substitu-
tion, since it describes the mapping from context-independent
phones to context-dependent triphonic models, denoted by
phone=left context right context. Just two hypothetical phones
x andy are considered for simplicity. Each state encodes the
knowledge of the last and of the next phone. State labels in the
figure are pairs(a; b) of the pasta and the futureb, with � repre-
senting the start or end of a phone sequence and� an unspecified
future. For instance, it is easy to see that the phone sequence
xyx is mapped by the transducer tox=� y y=x x x=y � via
the unique state sequence(�; �)(x; y)(y; x)(x; �).

More generally, when there aren context-independent phones,
this construction gives a transducer withO(n2) states and
O(n3) transitions.
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Figure 3: Minimal transducer
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Figure 4: Context-dependent triphone transducer

Of course, a practical speech recognition system may not use all
and only triphones. For each context specification, an appropri-
ate context-dependency transducer can still be constructed. The
main idea, which is embodied in the example above, is to use
transducer states to represent appropriate classes of contexts. For
instance, if training data is insufficient to create accurate full tri-
phonic models, contexts may be collapsed by ignoring left or
right context, or by clustering contexts. Furthermore, automatic
training techniques may be used to create suitable context classes
[19]. Context classifiers may then depend not only on phones
but on additional information such as word boundaries or vowel
stress. For such complex context classes, direct construction of
the context-dependency transducer is quite delicate. Instead, it
is easier to specify the possible contexts as context-dependent
regular expressions or rewrite rules and to compile these spec-
ifications into finite-state transducers using one of several ex-
isting compilation methods [7, 14, 18]. This approach has the
advantage that contexts are specified in a perspicuous notation
appropriate to the problem, with the conversion into a compact
transducer representation being left to a general-purpose com-
pilation algorithm. This is analogous to the compiling a set of
pattern-matching regular expressions into an efficient finite-state
automaton that implements that match in Unix tools such asgrep

andlex.

Any context-dependency transducer, whether directly con-
structed or compiled from patterns or rules, may benefit from
determinization. Each state of adeterministictransducer, by
definition, has distinct input labels for each transition leaving
it. In Figure 4, many states have multiple transitions with the
same input label leaving them (for instance, the initial state has
threex labeled transitions). Since nondeterminism may increase
the work of algorithms such as composition, it is often better to
construct a deterministic transducer or apply a determinization
algorithm to an existing non-deterministic transducer [10, 13].
The construction in Figure 4 can be altered to produce a deter-
ministic transducer by using the right context phone rather than
the center context phone as the input label of a transition. 3

3. COMPOSITION
We just showed how the units at different levels of speech model-
ing can be represented by transducers. It remains to put the units
together into a complete modeling network. This is done in two
conceptual steps. First, we allow arbitrary sequences of units
at each level by adding an�-transition fromeach final state in
the lexicon (Figure 2b) to the initial state (Kleene closure [16]).
Second, wecomposethe various level transducers in the correct

3This delays the context-dependent labels by one phone with respect
to the context-independent labels, but does not affect the overall string-
to-string pairing along a complete path.

order — context-dependency transducer, lexicon transducer and
language model — yielding a transducer from distributions to
word sequences that is guaranteed to represent all the required
cross-word context dependencies.
As previously noted, a transducer represents a binary relation
between strings. The composition of two transducers represents
their relational composition. In particular, the compositionT =

R � S of two transducersR andS has exactly one path mapping
sequenceu to sequencew for each pair of paths, the first inR
mappingu to some sequencev and the second inS mappingv
to w. The weight of an output path is the product of the weights
of the corresponding pair of input paths [16].

A crucial algorithmic advantage of transducer composition is
that it can be computed on demand in a natural way. Our
composition algorithm creates on demand just those states and
arcs of the composed transducer that are required in a particu-
lar decoding run, for instance, those required for paths within
the given beam width from the best path. We can thus use the
on-demand composition algorithm as a subroutine in a standard
Viterbi decoder to combine a language model, a multipronun-
ciation lexicon with corpus-derived pronunciation probabilities,
and a context-dependency transducer. Our external interface to
composed transducers does not distinguish between on-demand
and precomputed compositions, so the decoder algorithm is the
same as for an explicit network. In fact, we may also choose to
build our networks off-line when appropriate for the given task.
In general, expanding the networks on demand may save space,
while expanding them off-line may save time (during recogni-
tion). In the next section, we look more closely at this issue.

Transducer composition is a generalization of the standard state-
pair construction for finite automata intersection [6]. The com-
positionT of transducersR andS is a transducer whose states
are pairs of a state fromR and a state fromS, and that satisfies
the following conditions: (1) the initial state of the composition
T is the pair of the initial states ofR andS; (2) a state is final
in T iff it is a pair of final states fromR andS, and (3) there
is a transition inT from (q; q0) to (r; r0) iff there arecompati-
ble transitionst from q to r and fromq0 to r0, where compatible
means the output label oft matches the input label oft0. When
they match, the resultingT transition takes its input label from
t, its output label fromt0, and its weight is the product of the
weights oft andt0.

When there are� labels present in the output ofR or the input of
S, the set of transitions forT given above must be extended. The
basic extension is to allow a transition with� output (input) inR
(S) to match an implicit� self-loop inS (R). However, when
there are� transitions on both transducers, care must be taken



states arcs

context 762 40386
lexicon 3150 4816
grammar 48758 359532
full expansion � 1:9� 106 � 6� 106

Table 1: Recognition example

to avoid multiple redundant matches. The interested reader is
referred to [16, 12] for the algorithm for this general case and a
proof of its correctness.

Operations (1) and (2) can be implemented trivially. Operation
(3) requires finding compatible transitions leaving a pair of states
in R andS; this can be done, for example, by pre-sorting labels
and merging as needed.

The above three operations can be computed on demand since
they depend only on local properties of the component trans-
ducers. In fact, we use precisely these three operations as the
interface between the decoder and the modeling network. Thus,
the decoder can not distinguish between explicit and on-demand
networks. Further, other kinds of on-demand combinations are
also easily implemented in this way such as the dynamic union
of networks.

There is an important optimization for the on-demand case. As
described so far, every time a composition state is expanded, the
work done to build the composition is repeated. Since a decoder
may often expand the same state many times, it can instead be
useful to save and reuse the results of previously expanded states.
There is variety of suchcachingdisciplines that can be used: for
example, (1) save all previously expanded states (for the given
utterance), or (2) save recently expanded states, but free less re-
cently used ones. For the results in the next section, we used
caching method (1).

4. EXPANSION METHODS
To evaluate the tradeoffs in space and time between expanding
networks on demand during recognition and off-line network
expansion, we examined several recognition tasks. In particu-
lar, we evaluated a recognizer for the DARPA ATIS task using
full-cross-word triphonic models, a 1533 word vocabulary, and a
class-based trigram grammar [17]. Table 1 shows the sizes of the
context-dependency, lexicon and language model transducers for
this task.
For the same recognitionaccuracy as with a static, fully ex-
panded network, on-demand composition expands on-average
less than 3% of the total number of arcs while adding no sig-
nificant runtime overhead (less than 2% of total runtime). We
found proportionally similar space reductions on the 991-word
DARPA RM task with finite-state and word-pair grammars and
on a 20,000 DARPA NAB task with bigram and trigram gram-
mars. However, with very large vocabularies such as in NAB,
we have found the runtime cost of the on-demand composition
becomes significant (approximately 25% of the total runtime)
unless weighted determinization is applied to the composition of
the lexicon and the grammar. Once this optimization is applied,
the overhead of on-demand composition is significantly reduced
and so is the size of the fully-expanded network. This more re-
cent work is described elsewhere [13].

5. CONCLUSION
While we focused here primarily on triphonic contexts and
finite-state language models, our approach applies much more
generally. Any bounded-memory context-dependency can be
modeled as a transducer, for instance any context model based
on decision trees. Furthermore, any language model-class closed
under composition with finite-state transducers, such as (prob-
abilistic) context-free grammars, is compatible with our on-

demand composition method.
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