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ABSTRACT
We present an algorithm for the automatic acquisition of
salient grammar fragments in the form of finite state
machines (FSMs).  Salient phrase fragments are selected
using a significance test, then clustered using a
combination of string and semantic distortion measures.
Each cluster is then compactly represented as an FSM.
Flexibility is enhanced by permitting approximate
matches to paths through each FSM.  Multiple fragment
detections are exploited by means of a neural network.
The methodology is applied to the “How may I help you?”
(HMIHY) call-type classification task.

1.  INTRODUCTION
We are interested in spoken language understanding and
dialogue systems, in particular for providing automated
services to non-expert users.  In previous work [1-6] we
have considered the problem of automatic call routing in
response to the open-ended prompt “How may I help
you?”.  The aim is to infer an appropriate machine action
from the caller’s utterance, and the issues of large-
vocabulary speech recognition and dialogue
management are addressed in [4,5].  In this paper we
consider the automatic acquisition of salient grammar
fragments in order to learn the mapping between the
speech channel and the set of machine actions.  We show
that by applying these grammar fragments we can
achieve improved performance in call classification, as
compared to the results in [2].

We use a database of 10k spoken transactions between
callers and human agents, separated into training and
test sets.  The caller’s first utterance in each transaction
has been transcribed and labelled with one or more of 14
call types such as collect, person-to-person, and calling-card,
plus a 15th class denoted other which is intended to
subsume the remainder [3].  Previously we have used a
large set of automatically-acquired salient phrase
fragments, individually associated with the call types via
an estimated posterior distribution.  Detected
occurrences of these phrase fragments within a speech-
recognized utterance provide a basis for classification of
that utterance.  Three issues that naturally arise are the
following:
• most fragments occur rather rarely in the training

data, so the estimated posterior distributions tend to
be erratic,

• many fragments are similar to each other and occur
in similar semantic contexts,

• most test utterances contain more than one detected
fragment.

The purpose of the grammar fragments and the new
decision rule described below is to take advantage of the
second and third of these points while allowing for the
first.  Using these new methods, we achieve a useful
operating point with 87% correct classification rate at
rank 2, for a 40% false rejection rate.

2.  SALIENT GRAMMAR FRAGMENTS
2.1  Significance test for phrase fragments

We want to select phrase fragments that are meaningful
for the task.  Previously we have used a measure of
salience [1,2] to assess (for a particular fragment) the
distortion between the prior and posterior distributions
over the call types, but this does not take into account the
frequency with which a fragment occurs.  A fortunate
conjunction of events can give a low-frequency fragment
a high apparent salience purely by chance.  Here we
avoid this shortcoming by testing, for each fragment, the
null hypothesis that its behaviour is governed by the
prior distribution over the call types, and that it therefore
occurs at random.  Suppose that a fragment f has a total
of n occurrences of call-type labels in training, and let
{ , , }r r1 2 �  denote the set of all possible partitions of n

occurrences into K = 15  classes.  Let the actual observed
distribution of counts for f be r f , and the prior

distribution be denoted Kkkp ,,1}{
�= .  Under the null

hypothesis, the probability of any particular partition
r n ni i iK= 1, ,�  of n occurrences over the classes is given
by the multinomial distribution:
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A fragment f of frequency n is accepted at significance
level α if
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where A f r P r n P r ni i f( ) { : ( ) ( )}= ≤  is the set of

partitions that have probability not exceeding that for the
observed distribution.  Any fragment for which the
observed distribution can be seen to be a relatively likely
random sample from the prior is therefore rejected.

This is an exact test of significance, and is valid even for
fragments with very small occurrence counts.  For the
“How may I help you?” (HMIHY) task, the median
frequency within 7884 transcribed training utterances for
the fragments derived in [2] is 6.  Imposing a significance



level of 5% reduces the total number of phrase
fragments by about 30%.  While this appears to be
a drastic reduction, and many of the rejected
fragments would appear to be meaningful to a
human judge, it highlights the problem of basing
inferences on specific but complex objects for
which the training statistics are fragile:  in this
case, a posterior distribution over 15 classes based
on typically only 6 observations.  Because many
fragments that are rejected are mild variations of
others that are accepted, the final coverage is
unaffected — there is no significant increase in
false rejection rate for the test utterances as a result
of applying the fragment significance test.

2.2  Clustering the fragments

In order to exploit the similarity between
fragments, the next step is to cluster the surviving
phrase fragments by using an agglomerative
clustering procedure.  For this we use a
Levenshtein string distance measure d f fS( , )1 2

between fragments f f1 2, , in which the insertion,
deletion and substitution penalties are weighted by the
salience of the respective words.  This has the effect of
penalizing salient errors (such as substitution of “collect”
for “credit”) more than non-salient errors (such as
substitution of “this” for “the”).

However, fragments that are similar as strings can have
different semantics, e.g. the fragments “need a credit” and
“a credit card” indicate a billing credit request and credit
card payment respectively.  It would be undesirable for
these to enter the same cluster.  In assessing this we must
again allow for the variability attributable to small
samples.  We therefore use a measure of semantic
distortion defined as
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where �( )P c C f Fk t t∈ ∈  is the estimated posterior

distribution over call types ck  for fragment f, and C Ft t,
are the sets of labels and observed fragments for an
utterance t.

This is a weighted mean-square error between the
estimated posterior distributions.  We chose not to use
the Kullback-Leiber measure because it is important to
take the small sample sizes into account, and using the
mean-square measure enables this.  The denominator
consists of an estimate of the variance of the difference
between the estimated posterior values (for each call
type) under the hypothesis H.  This hypothesis states that
the two fragments have the same true (but unknown)
posterior distribution.  It follows that under this
hypothesis H, the expected value of d f fM ( , )1 2  is equal
to 1.0 regardless of the fragment occurrence frequencies,
which may be small.  A large value for this measure can
then be taken to imply that H is false, and therefore

provides evidence for divergence between the posterior
distributions.  Note however that this measure does not
obey the triangle inequality and so is not a true measure
of distance.  The evaluation of d f fM ( , )1 2  in terms of
actual occurrence counts is given in the Appendix.

The overall measure used for clustering is the maximum
of the string and semantic distortions.  It is interesting to
note cases where fragments that are similar as strings but
semantically different are placed in different clusters,
whereas fragments that are different as strings but
similar semantically are placed in the same cluster.  The
occurrence count distribution for the fragment “call to
digit10 eos” is shown in the top part of figure 1, (“digit10”
is a non-terminal symbol representing a ten-digit string,
and “eos” is the end-of-sentence marker).  This fragment
occurs often in collect and dial-for-me calls.  As shown in
the central part of figure 1, the very similar fragment
“this call to digit10” occurs in only five training calls, all
of them labelled as third-number.  This difference in
semantic behaviour keeps these two fragments apart.
The bottom part of figure 1 shows the distribution for “it
to my phone”, which is also mainly a third-number
fragment.  The visible differences between this and the
central fragment are explainable by the small numbers of
occurrences for these two fragments, and it turns out that
they end up in the same cluster.

Test results in call-type classification after using the
combination of string and semantic distortions are
superior to those obtained using either distortion
measure alone.

2.3  Conversion into FSMs

Each of the resulting fragment clusters is converted into
an FSM representing a grammar fragment.  For this we
use a method similar to the ECGI algorithm [7].  A very
simple example is shown in figure 2.  For each FSM, the
posterior distribution over the call types is then obtained
by searching the training data for exact matches to paths
through the FSM from the start node to a final node.  It is

Figure 1:  Occurrence count distributions for three fragments
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noteworthy that the median occurrence frequency for the
FSMs on the HMIHY training data is 15, a significant
improvement on the 6 observed for the phrase
fragments, and the statistics for these objects are
consequently more robust.

Observations in the form of exact or approximate
matches to a path through the FSM can then be found for
the test utterances.  Approximate matches are found by
using a dynamic programming algorithm in which word
salience is used to weight the errors.  An example of an
approximate match is shown in figure 3, where the word
a is substituted by this, both words having low salience.

3.  CALL-TYPE CLASSIFICATION
3.1  Peak-of-fragments classifier

We need to infer a call-type from the fragments detected
within the speech.  More generally, we would like to
assign a ranking to the call-types.  A simple method for
doing this involves finding, for each call type, the highest
posterior probability attributed to it by any detected
fragment:

s P c C f F k Kk
i
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where { }fi  are the detected fragments for the utterance.
The rank-1 decision for this utterance is then the call type
which has the highest of these scores:
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This method is used in [6].

3.2  Neural network classifier

Typically an utterance contains several detected
fragments (even when the phrases are clustered and
formed into FSMs) and it is advantageous to combine the
evidence from these when arriving at a classification.
One method for doing this is as follows.  The detected
fragments form a lattice which is parsed, for each call-
type separately, to find the path generating the highest
cumulative score — summing the posterior probability
for that call-type along the path.  The resulting set of

scores is passed through a feed-forward neural
network in order to generate a final output score
for each call-type, which serves for a ranking.
The neural network is trained by back-
propagation using the transcribed and labelled
training data.  For each training utterance, the
inputs to the network are the scores found from
the text in the manner just described, and the
desired outputs are set to 1 for those (one or
more) call-types that are correct and 0 for the
remainder.  We have used single and two-layer
networks, and the performance advantage from
having the second layer was found to be
negligible.

The neural net has two main purposes:
• each output score is in the range (0,1) and

may reasonably be interpreted as the
posterior probability of the call-type, given
the cumulative evidence for the call-types

expressed in this simple way as sum of posteriors,
• it embodies the information that certain conjunctions

of call-types are possible (e.g. collect and dial-for-me)
whereas others are not (e.g. collect and billing-credit).

We have found that this method for exploiting multiple
fragments gives better results than a bag-of-fragments
model.

4.  EXPERIMENTS
4.1  Evaluation method

In the HMIHY task there are 14 call types, plus a class
called other for which the intention is that these calls be
transferred immediately to a human agent.  There is
therefore a criterion for rejection and we can measure the
true and false rejection rates for manually labelled data,
as well as the true classification rate.  At each rank, a call
is “rejected” either if the decision for that rank is other or
if the score for that rank is below a given threshold.  By
varying the threshold we can generate ROC curves.  For
the experiments reported here, rejection at rank-1 is
taken to imply rejection also at rank-2 (although this
won’t necessarily be the case in the context of a
dialogue).

4.2  Results

For training we use a set of 7884 utterances that have
been manually transcribed and labelled.  For testing we
use a similar set of 1000 further utterances, processed by
a large-vocabulary speech recognizer [4].  Matches of
grammar fragments to the output are found, and used
for classification as described in section 3.

The dashed lines in figure 4 show the ROC curves for
rank-1 on both speech and text , obtained using a set of
3720 salient phrase fragments with the peak-of-
fragments classifier.  After applying the significance test
to the phrase fragments (with α set at 5%), clustering and
formation into 560 FSMs as described in section 2, and
using the network classifier, we obtain the ROC curves
shown by the solid lines in figure 4.  A significant
improvement in performance at rank-1 is seen both for

Figure 2:  A simple grammar fragment
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speech and for text, and the curves for rank-2 are also
shown.  This suggests a useful operating point for speech
with 87% correct classification rate at rank 2, for a 40%
false rejection rate.

In figure 5 we show the ROC curves for rejection, for the
speech-recognized utterances.  Again, the new methods
lead to an improvement, with a true rejection rate of 85%
at rank-1, for a 40% false rejection rate.

5.  CONCLUSIONS
The extraction and application of salient phrase
fragments allows us to classify incoming calls using units
that are larger (and usually less ambiguous) than
individual words but without the need to parse an entire
sentence.  Many fragments turn out to be minor
variations of each other, and each variation may
in turn be a rare event, but by automatically
selecting and clustering phrase fragments using
methods that are valid for small samples we
obtain grammar fragments that are both robust
and highly informative.  Compacting the
clusters into FSMs gives us a representation that
has reduced space and time demands when
processing new data.  Central to the work
presented here is the requirement that the
acquisition and deployment of phrase and
grammar fragments is achieved by automatic
procedures.

Appendix — Evaluation of semantic
distortion measure for two fragments

Let N N1 2,  be the number of training

utterances for which the fragments f f1 2,  occur,
respectively,

X Xk k1 2,  be the number of training

utterances of call type ck  for which the

fragments f f1 2,  occur, respectively,

Y k12  be the number of training utterances

of call type ck  for which both the fragments

f f1 2,  occur.
Then a simple version of the semantic distortion
measure defined in section 2.2, which works
well in practice, is
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where K is the number of classes.
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Figure 4:  ROC curves for 1000 test sentences
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Figure 5:  ROC curves for rejection (speech)
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