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ABSTRACT

Additive and convolutional noises are the main problems
to be solved in order to make speech recognition success-
ful in real applications. A model for additive noise is used
to deduce a spectral subtraction (SS) estimation and to
show that the channel transfer function could be effec-
tively removed after the additive noise being cancelled by
SS. Then, SS and mean normalization are tested in com-
bination with a weighting procedure to reduce the influ-
ence of the rectifying function. All the experiments were
done in the context of weighted matching algorithms and
the approaches proved effective in cancelling both additive
noise and the transmission channel function.

1. INTRODUCTION

In [1], a model for additive noise using IIR filters was
proposed and used to compute the reliability related to
the spectral subtraction (SS) process. The reliability in
noise cancelling was used to weight DP algorithms and
shown to be useful in reducing the error rate. Neverthe-
less, the low selectivity of the IIR filters made the system
more vulnerable to convolutional distortions and the use
of a DFT bank filter is desirable because it provides an
infinite rejection outside the filter band.

If there is only convolutional distortion, a widely used
technique is Cepstral Mean Normalizatoin (CMN). CMN
is effective and efficient but its behaviour is hard to predict
when additive noise is also present [2].

The contributions of this paper concern: a)the generali-
sation of the model for additive noise for the case of DFT
filters; b)the proof that under some conditions, the log of
the SS estimation is equal to the expected value of the log
of the clean signal energy; and c¢) the proof that the effect
of an unmatched transmission channel can effectively be
removed by means of the classic mean normalization tech-
nique after SS. The approach covered by this paper has
not been found in the literature and seems to be generic
and interesting from the practical applications point of
view. The results presented in this paper provide a theo-
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retical justification for the use of mean normalization after
SS, and show that both techniques in combination with
weighted matching algorithms can effectively remove both
additive and convolutional distortions.

2. MODEL FOR ADDITIVE NOISE USING
DFT FILTERS

Given that s(i), n(z) and (i) are the clean speech, the
noise and the resulting noisy signal, respectively, the ad-
ditiveness condition in the temporal domain may be set
as:

2(i) = (i) +ni) (1)

In the results presented in this paper, the signal was pro-
cessed by 14 DFT Mel filters. If S(k), N(k) and X (k)
correspond to the FFT transform of s(7), n(z) and (1) at
the point k, and ¢ is the phase difference between S(k)
and N (k), the additiveness condition is then set by:

X(k) = S(k)+N(k) (2)

According to the cosine rule,

XK = [SER)°+IN )+
2-|S(k)| - [N (k)| - cos(dx) (3)

The energy at the output of the filter m, E, is computed

by means of:

A=Y Gk XRE @)

kE€filterm

where G(m, k) is the set of weights that define the filter

m. If | X (k )| in (4) is replaced with the expression given
in (3), 72, can be set as
o= wam
> 2-Glm, k) |S(k)] - N (k)| cos(ér)  (5)
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where: E and E are the filter m mean frame energy of
the clean speech and noise signal, respectively.



Assuming that the phase difference ¢(k) = ¢, N(k) and
X (k) are considered constant inside each one of the 14

DFT Mel filters indexed by m:

T o= Famh 42V Vancos(s) (6)

The model for additive noise represented by (6) assumes
that the components |S(k)| and |N (k)| and the phase dif-
ference ¢ are constant inside every filter in a given frame.
These assumptions are not perfectly accurate in practice.
Firstly, the 14 DFT mel filters are not highly selective,
which reduces the validity of the assumption of low vari-
ation of these parameters inside the filters. Secondly, the
phase ¢ between |S(k)| and |N (k)| is not necessarily con-
stant and a few discontinuities in the phase difference may
occur, although many of them are unlikely in a short term
analysis (i.e. a 25 ms frame). However, this model rep-
resents the fact that there is a variance in the short term
analysis and specifies the relation between this variance
and the clean and noise signal levels. Due to these approx-
imations the variance predicted by the model is higher
than the the real one for the same frame length, and a
correction should be included. Using (6) and considering
that ¢ was uniformly distributed between —7 and =:

2 ___ -
Var[%”s?n, n2,] =0.5-5% - n?,

In order to estimate the correction of the model, the co-
efficient %,,, defined as

by = Anthorh (")

2.1V 82,V n2,
was computed with clean speech and only-noise frames.
According to (6), Var[km|sh, n%] should be equal to 0.5
but due to the approximations this variance is lower than
0.5 and a correction factor ¢,, needs to be included in (6):

@3 = S0+ 2 em - Vsh o Vg, - cos(8) (8)
where ¢, 1s defined as

Com = 2Var[km|£, n2,]

Solving (8) for 2

2(¢,n%,12) = 2-A%.cos’(¢)+ B —
2-A-cos(d) /A2 -cos?(¢)+ B (9)
where A = Ecm and B = E—E

3. CHANNEL VARIANCE AND
RELIABILITY IN NOISE CANCELLING
BY SS

With the model for additive noise represented by (9), the

variance (or uncertainty) of the hidden information s2,

given the observed information 2, is estimated in the

logarithmic domain assuming that the random variables
¢ and n$, are uncorrelated, ¢ is uniformly distributed
between;ﬂ' and 7 and that n2, is co_ncen_trated near its
mean F[n%,]. The variance Var[log(s%,)|z%] is given by:

Varllog(s,)|z3,] = E[log2 s%.)|r3,] —

where

Bllog? (5[5 = o / 108’ [7 (6, B[, 78 )d6
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Equation (16) below suggests that the expected value of
the hidden information log(g) is approximately equal
to the log of the spectral subtraction (SS) estimation (
Est(s3,) ) if Est(s2,) = #2, — E[(n2,)], where E[n2,] is
the mean noise energy estimation made in non-speech in-
tervals. In order to avoid negative magnitude estimates a
rectifying function r() is applied:

T(Est(g),e) _ { Est(s?,) %f Est(ﬁ) >e (11)

€ if Est(s?) <e
where ¢ is an arbitrary low constant. Asin [1] the weight-
ing coefficient w, to be used by the weighted algorithms
[1] and that attempts to measure how reliable is the result
of the noise cancelling method in a frame, was defined as:

v - { 1 ) if TotalVar < § (12)
Forarvar i TotalVar > 6
where
14
TotalVar = ZVar[log(EﬂE] (13)
m=1
Var[log(s2,)|x2,] was estimated by means

of E[log(gﬂg] ~ log[z2, — E[n2,]] (see section 4) and
the integral for estimating E[log2 (§)|E] was computed
by means of Simpson’s rule with the interval (—=, x) di-

vided in 100 regular partitions and replacing the difference
B =13, — n% in (9) with r(Est(s%), ).

4. ADDITIVE AND CONVOLUTIONAL
NOISE CANCELLING

Given the model for additive noise represented by (9), the
expected value of log[s2,(¢, n2,,z%,)] given the observed
information z2, would be:

Elog(F)T] = Flog(2- - cos’() + 1 -
2.2 cos(9) - /A2 cos2(9) + B)TE]+
Ellog(B)|x%] (14)



Assuming again that the random variables ¢ and E[n?,]
are uncorrelated, ¢ is uniformly distributed between —=

and 7 and that n2, is concentrated near its mean E[n?n],

E[log(gﬂa] can be written as:
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where A = 1/ E[n2,]- ¢m and B = 12, — E[n2,]. Replacing
the variable ¢ with v = _\/Aﬁ - cos(¢), the integral in (2)
becomes
™ A2 . 2 A
2-vVB % sinh ™ (u) p 0
_ u=
A-ln(10) -7 A B
( ) _\75 1— L u?
because the functions sinh™'(u) and 4/1 — (}32 u? are
odd and even respectively. Consequently,
Ellog(s3,)[+2] =~ log(v, — E[nZ]) (16)

This result means, according to the model for additive
noise, that the expected value of the hidden information
log(s%) is equal to the log of the SS estimation if SS is
defined as being ©2, — E[n2,]. If the gain introduced by the
transmission channel is considered constant inside each
one of the 14 DFT Mel filters the convolutional distortion
can be represented by H = [h1, k2, k3, ..., m,...h14] and
due to the fact that H is constant along time

Ellog(hm - s5)|22] =~ Ellog(sh)|e?] + ki (17)

where hl, = log(hm). Therefore, the convolutional distor-
tion could be effectively removed after the additive noise
being cancelled by means of SS.

5. SS AND MEAN NORMALIZATION

If there is only convolutional distortion, a widely used
technique is Cepstral Mean Normalization (CMN). How-
ever, when the speech signal is also corrupted by additive
signals, CMN loses its effectiveness [2]. Nevertheless, as
was shown in the last section, the effect of an unmatched
transmission channel could effectively be removed after
the additive noise being removed by means of SS given
that the SS estimation, Fst(s%,), is defined as being equal
to z2, — E[E] Due to the fact that Est(g) may be neg-
ative in those channels with low SNR a rectifying function
r()is applied. In order to model the effect introduced by
this rectifying function, the distribution of 12, needs to be
known but this is difficult to achieve in real applications
where the noise should be estimated in short non-speech
intervals.

The insertion of a transmission channel results in an ad-
ditive constant in both the logarithmic and cepstral do-
main, and can be cancelled by subtracting the mean from
all input vectors. In this paper the mean normalization
technique was applied in the logarithmic domain, before
the cepstral transform. The mean was computed by

log[Bst(on)] = o w(k,m) - log[Est(s3,)] 8)

K
ooy Wik, m)

where K is the number of frames of the utterance (or set of
utterances) and w(k, m) = 1 for the ordinary arithmetic
mean. A weighted arithmetic mean was also tested where
w(k,m) was defined as:

Wk m =
1 if Var[log(s

Varllog(s7 | le3,]
where Var[log(s? m)|a] was estimated according to (10).
The idea of (19) is to give a low weight to those bands
with low SNR in the computation of the means in order
to reduce the effect introduced by the rectifying function.

6. EXPERIMENTS

The proposed methods were tested with speaker-
dependent isolated word (English digits from 0 to 9)
recognition experiments. The tests were carried out em-
ploying the two speakers (one female and one male) and
the car noise from the Noisex database [3]. The isolated
words were manually rather than automatically end de-
tected in order to eliminate any effect introduced by the
discriminative selection of speech intervals with higher en-
ergies. The signal processing was as in [1]. At the output
of each channel the energy was computed, SS was applied
and the log of the energy was calculated. In every frame,
the log energies were normalized to the highest component
and 10 cepstral coefficients were computed. In these ex-
periments the noise estimation was made only once using
just 250ms of non-speech signal and was kept constant for
all the experiments at the same global SNR. The results
presented in this paper were achieved with 1000 recogni-
tion tests for each SNR. Unless the opposite is specified,
a one-step weighted DP algorithm previously proposed in
[1] was used in all the experiments. Where spectral tilt ex-
periments were performed clean reference utterances are
compared with noisy testing utterances corrupted by ad-
ditive plus convolutional noise. The tilt applied was a flat
frequency response up to a break point frequency of 250Hz
followed by a +6dB/oct tilt above 250Hz. The +6dB/oct
spectral tilt was chosen instead of +3dB/oct, usually used
in many papers, to make the testing conditions more se-
vere.

In all the experiments SS was applied in the linear do-
main utterance by utterance and the convolutional dis-
tortion was cancelled after SS using one, two, five or 10
additive-noise-free utterances (from different words of the



vocabulary) every time by means of mean normalization
in the logarithmic domain (LMN). In all the tests where
the weighted DP algorithm was used the parameter § was
made equal to 10 in (12) and (19), a value that was shown
to be suitable according to some experiments.

In experiments with SS and mean normalization, the
means were computed in the logarithmic domain, be-
fore cepstral transform. The folowing configurations were
tested: S5, SS with ordinary DTW; WSS, SS with the
one-step weighted algorithm [1]; WSS — LM N, SS and
mean normalization with the ordinary arithmetic mean
(18); and WSS — WLMN, SS and mean normalization
with the weighted arithmetic mean (18)(19). The results
are shown in Table 1 (without spectral tilt) and Table 2
(with spectral tilt). Figure 1 shows the recognition for
WSS —WLMN using different number of utterances to
cancel the convolutional noise. In Tables 1 and 2, the
means were estimated using 10 additive-noise-free utter-
ances (one per word of the vocabulary.

Table 1: Recognition error rate (%) for speech signal
corrupted only by additive noise (car).

| SNR | 18dB| 12dB| 6dB| 0dB |
55 4.4 73 12.9 215
WSS 0.1 0.4 1.8 8.6
WSS5-LMN 0.3 2.9 8.6 28.7
WS5-WLMN 0.3 0.7 2.7 8.2

Table 2: Recognition error rate (%) for speech signal cor-
rupted by additive noise (car) and spectral tilt (6dB/oct).

| SNR | 18dB| 12dB| 6dB | 0dB |
55 24.6 24.8 29.15 | 36.4
WSS 23.0 26.3 325 40.2
WSS5-LMN 0.3 1.8 6.9 21.8
WS5-WLMN 0.4 0.7 3.6 10.7

7. DISCUSSION

As can be seen in table 1, WSS (weighted DP algorithm
with SS) showed a substantial reduction in the error rate
in all the SNR’s when compared with SS (ordinary DTW
with SS). When compared with WSS, WSS — LMN in-
creased the error rate. However, when the weighted arith-
metic mean was used WSS — WLMN, the mean nor-
malization almost did not affect the recognition accuracy.
According to table 2, the spectral tilt dramatically de-
creased the recognition accuracy at all the SNR’s for S5
and WSS. The use of the ordinary mean normalization
technique WSS — LM Nsubstantially reduced the error
rate, but the best results were achieved in WSS—W LM N
with the weighted mean. Comparing the results of the
table 2 with the ones in table 1, WSS — WILMN was

almost completely robust to the convolutional distortion
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Figure 1: Recognition error rate (%) for speech signal
corrupted by additive noise (SNR equal to 18, 12, 6
and 0 dB), and spectral tilt (6dB/oct) as a function
of the number of utterances (N) used to estimate the
weighted arithmetic mean in WSS — WLMN.

at all the SNR’s. However, as can be seen in Figure 1, the
mean normalization technique is strongly dependent on
the length of the speech signal used to estimate the coef-
ficient means and and the required number of utterances
apparently increases for lower SNR’s.

8. CONCLUSION

The results presented in this paper show that the chan-
nel response can effectively be removed after the additive
noise being cancelled by means of SS, even when additive
noise is estimated with just a few frames. In these experi-
ments the noise estimation was made only once using just
250ms of non-speech signal and was kept constant for all
the experiments at the same SNR. Moreover, weighting
the information along the noisy speech signal helped to
cancel both additive and convolutional noises and good
results were achieved with techniques easily implemented
such as SS and mean normalization.
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