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ABSTRACT

Since speech sounds. such as fricative. glides. liquids.
diphthongs. and transition regions between phones.
reveal the most notable nonstationary nature. we
propose the nonstationary autoregressive (AR) HMM
with state-dependent polvnomial function for modeling
the nature of speech. Then. the nonstationary AR model
has parameters depend on the states of the Markov
chain. It is designed to handle the speech signal at the
frame level. where it is represented by the signal. rather
than dealing with feature vectors directly. Also. we
proposed a new speech enhancement bascd on the
nonstationary AR HMM and the IMM algorithm under
white noise condition. The proposed enhancement is the
weighted sum of the parallel Kalman filters with
interacting rule by IMM algorithm. The stmulation
results shows that the proposed method offers
performance gains relative to the previous results [7]
with slightly increased complexity

1. Introduction

Speech enhancement is the problem of enhancing a
given sample function of noisy speech signal to improve
the performance of voice communications whose input
signal is noisy. When the noisy signal is only assumed
available for processing. speech enhancement becomes a
set of particular in estimation and information theory.
The solutions could be found if the joint statistics of the
signal and noise were explicitly available [1]. The
hidden Markov model (HMM) and hidden filter model
(HFM) are useful methods to estimate probability
distributions of speech and noise signal in speech
enhancement. In the standard HMM [2.3] and HFM
[4.5]. individual states are assumed to be stationary
stochastic sequence. This stationary-state assumption
appears to0 be reasonable when a state is intended to
represent piece-wise stationary segment of speech. Since
speech sounds. such as fricative. glides. liquids.
diphthongs. and transition regions between phones.
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reveal the most notable nonstationary nature, we can not
expect to obtain the better performance by the
conventional speech enhancement methods based on
such assumption.

Recently, to overcome these problems, an approach
based on the trend HMM [6] is suggested for speech
enhancement [7]. In this approach speech signal is
blocked by samples into fixed-length frames and cach
frames are modeled by time-varying autoregressive
model controlled by Markov switching sequence. Given
the trended HMM trained from clean speech, a recursive
estimation for speech cnhancement comprises a
weighted sum of Kalman filters operating scparately in
parallel. Thus the interactions between the parallel
filters are ignored.

In this studv. we propose the nonstationary
autoregressive  (AR) HMM  with  state-dependent
polynomial function for modeling the nature of speech.
Then. the nonstationary AR model has parameters
depend on the states of the Markov chain. Our model is
formallv verv similar to the trend HMM [3]. but it is
designed to handie the speech signal at the frame level.
where it 1s represented by the signal, rather than dealing
with feature vectors directly. We also propose a new
speech enhancement based on the nonstationary AR
HMM and the interactive multi model (IMM) algorithm
under white noise condition. In this approach the
estimator of speech is the weighted sum of the parallel
Kalman filters. As the IMM algorithm handles the
interactions between the parallel filters in an efficient
way. enhancement performance is improved about 0.8
dB without much increase in complexity.

I1. The Nonstationary AR HMM for Speech Model

In nonstationary AR HMM. speech signal is blocked
by samples into fixed-length frames and modeled by
nonstationary AR model with frame-varving polvnomial
function controlled by Markov switching sequences at
each frame. It 1s designed to handle the speech signal at
the frame level. where it is represented by the signal.
rather than dealing with feature vectors directly. Then.
at n-th frame speech signal conditioned on state /i is



expressed as a linear combination of its past valued plus
excitation source as

y(N(n -1+ f) = é:zj:u Bf (m)n’”y(N(n —)+r- k)
e,(N(n—=1)+1). r=L..N (1)
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where Y Bf (m) »n™ in the first term 1s the state-

m=0
dependent polynomial function of order A/ the second
term e, () is the excitation source with state-dependent

variance 0',.2 . N and n is the frame length and number.

respectively.
The parameter set
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o j=1 . L} of the nonstationary AR-HMM for
clean speech is estimated from training of speech

signals. where a; is transition probability. We define

the observation sequence O; = {01,03..__07}. where

0, = {(N(n=1)+1).y(N(n = 1) +2)..... y(Nn)}

and 7 is number of total frame. As with the standard
HMM. we used the expectation-maximization (EM) or
Baum-Welch algorithm for parameter estimation. Each
iteration of the EM algorithm starts with an old set of
parameters. savA,. and estimation a new set of
parameters. savA . by maximizing the following
objective function with training sequences of speech:

3

(2. 4,) =% p(s
S

or .4, ) logp(O] .S

. e (N(n—1 :
+log ﬁ exp| — (cl( (n ) i [)) 2)
r=1 27[0', 20’,‘

where § = {s(l)s(Z)s(T)} is state sequence and
Vi (n) is a posteriori probability of the transition from

state i to state j given the observation sequence and the
model A, .

For Af=0. the nonstationary AR HMM becomes the
standard HMM. Given the clean speech. we can easily
estimate a nonstationary AR HMM parameter by EM
based training algorithm [9].

II1. Speech Enhancement Algorithm

We assume the noisy speech is only available for

processing as
z(r)= w(r) +v(7) (3)
where z(f) is noisy speech and v(f) white noise with
zero-mean and variance o .
Let Z"= {zl.,m.zn}.zn :[z((n - I)N)'--z(n-N - 1)]

be measurement sequence vector. Using the law of total
probability, the minimum mean square error (MMSE)
estimator is given by
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where I, = [y((n - l)N)...y(n~N —1)] is speech vector

and s, is state sequence.

This estimator comprises a weighted sum of
conditional mean estimator for the composite states of
the signal and noise. where the weights are the
probabilities of theses states given the noisy signal.
Since given s, the signal T, is Gaussian and the noise

process is also assumed Gaussian. the conditional mean

estimator 1, =F {Yn

7" s, =i} can be independently
evaluated for each element. Let §,,(r) be the r-th

element of )A'n_,. . Then (4) can be written as

L
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In this case. the conditional mean estimator 3,,(r) is

obtained from Z" using a Kalman filter.
From (1)-(3). we can construct state space model of the
form

¥ ,“.([) = CD(n = i)yn‘, (t - l) +e,; (t) (6)
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.and 5% . is k-th element of B;(m).
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From standard Kalman filtering theory for white
source and measurement noise. the state vector
estimator is

Vuilt)=@(n=0),.(r-1)

+K, (z)[z(z) — HO(n = i)y, (- 1)]

The gain and error covariance equations are

®)



K, (1) = P, (i =1)e[ o7 + HT P, (1l -1) H]fl )
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where

s, :i.Z""]}. (12)

Yuilt=1)= E{yn_, (r-1)

P(r-1)= E{[yn(t ~1)-¥,,(t- 1)][---]Tlsn =i Z"" } :
(13)
and P, (t|t - l) is an a priori error covariance matrix of

i-th state Kalman filter.
~1) and P(r-1) .

we first introduce the following equation on the basis of
the total probability law:

p(yn (t=1)fs, =i.2" 1) = ;{p(yn(' ~1)s..

s =i,Z"‘1) (14)

To derive the equations for i,,‘,»(t
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As s, is independent of y, (r-1) if s, is known. we
casily obtain
Pl = Dfss = s, =i 2" Y= Ay -0
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Substituting of this and of the following:
4 (Sn—l = J
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in (14) vields
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J
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And the denominator of (17) can be written as

p(sn = iZ"’l) = Zaijp(s,,,] = jZ'H) (18)
J

From (12).(13) and(17). we computes the mixed initial
conditions y,,(¢r—1).P,(r—1) for the Kalman filter

matched to s, =i . according to the following equations:
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In this step we introduce the approximation. In the

following segments, all parameters are initialized using
the values from the previous segment.

By Bayes rule. probability P(sn =i

) of (5) is
rewritten as
P(z,, s, = i.Z"“)P(sn - iZ""])
P(sn = ilZ") - @n
P(zn Z"’l)

Since the first term of the numerator P(

z,ls, = i,Z""‘)
can be approximated by a Gaussian density function, the
clement of P(zn s, = i,Z"”) is established from the
Kalman filter (8)-(10) as
P(zn(t)lsn = i.Z'H)
x N[an(n = )9, (t-1).0% + HTP, (i) - 1)H]

where N [ ] is normal distribution function.

Then. P(zn

S, = i.Z”“l) is rewritten as

P(zn s, = i\Z"’l) ~ ]A‘/[P(zn(t)
1=1

5, = i.Z"'l) (22)

The second term of the numerator P(sn Z"") can be

rewritten as

P(s,, Z"‘l) =

ZL_:]P(sn = iisn—l = j)P(Sn—l = j‘zrkl)

',
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Since P(sn,1 = j‘Z”‘l) is known from the previous

recursive calculation and P(

z, Z"'l). being common to

)

all terms. act as a normalization factor, P(sn =i

can now be computed by
N
(s = IIZ ) const)]'[ P(z,1 (t)
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With initial condition (s, =12") =%, $0,(0) =

and P;(0)=10-1 at the first speech segment, for

i=1,...,L, filtering is performed in the following order.
The first is the mixing step denoted by (18)-(20) and the
next Kalman filtering step is processed by (8)-(11).
Then the probability calculation follows from (24) and
finally the output is generated in (5). Note that the
mixing which is represented by (18), (20) and is the key
of the IMM algorithm can not be found in the previous
algorithm [7].

For the better estimation of the speech, we delayed the
computation of )7" (l ) until the (t+p-1) the instant. The

speech sample estimate at time instant ¢ is finally



obtained by
L
5.0 = I8, (05, =12") 25)
Jj=1

Hence. all Kalman filters are tried and each estimate is
assigned a probability of being the best signal estimate.
Since the MMSE signal estimate is constructed as the
average of the individual estimate weighted by their
probabilities. this estimator is soft decision estimation
approach.

IV. Experimental Results

We discuss the performance of the proposed speech
enhancement. This method was tested using Gaussian
white noise at input signal-to-noise ratio (SNR) greater
than or equal to 3 dB. The SNR is defined as the ratio
between the average power of the signal and the average
of the noise.

The nonstationary AR HMM with A/=] was estimated
from a training data set which consisted of 7-min of
conventional speech from four speakers. two male and
two females. The raw speech data was in the form of
digitally sampled signal at 12kHz. A Hamming window
of duration 25.6 msec was applied every 20 msec within
each window. 12-order AR coefficients were computed.
We choose to evaluate the proposed method with the
nonstationary AR HMM based separately multiple
model. The method was tested on speech signals
different from those used for training. and the speakers
of the training and test speech material were not the
same. The test data consisted of two sentences originally
spoken by a male and a female.

Table 1 compares the performance of the proposed
method with that of the conventional method.

V. Conclusions

In this study. we proposed. implemented and evaluated a
speech enhancement based on nonstationary AR HMM
and IMM. The principal motivation of this method is to
parametrically describe continuously-varying
transitional acoustic patterns of speech in a more natural
and a more structural manner than the conventional
method developed and widely used in the past. In this
approach the estimator of speech is the weighted sum of
the parallel Kalman filters. These filters are operating
interactively instead of separately. The enhanced
performance is improved by considering the interactions
between the parallel filters.
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Table 1. Output SNR Performance

input Proposed method
SNR HMM SMM IMM
5 10.1 10.3 i1
10 142 147 15
15 18.3 18.7 19
20 222 22.5 22.8




