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ABSTRACT

Statistics of pitch have recently been used in speaker
recognition systems with good results. The success of
such systems depends on robust and accurate computation
of pitch statistics in the presence of pitch tracking errors.
In this work, we develop a statistical model of pitch that
allows unbiased estimation of pitch statistics from pitch
tracks which are subject to doubling and/or halving. We
first argue by a simple correlation model and empirically
demonstrate by QQ plots that “clean” pitch is distributed
with a lognormal distribution rather than the often assumed
normal distribution. Second, we present a probabilistic
model for estimated pitch via a pitch tracker in the presence
of doubling/halving, which leads to a mixture of three
lognormal distributions with tied means and variances for
a total of four free parameters. We use the obtained pitch
statistics as features in speaker verification on the March
1996 NIST Speaker Recognition Evaluation data (subset
of Switchboard) and report results on the most difficult
portion of the database: the “one-session” condition with
males only for both the claimant and imposter speakers.
Pitch statistics provide 22% reduction in false alarm rate
at 1% miss rate and 11% reduction in false alarm rate at
10% miss rate over the cepstrum-only system.

1. INTRODUCTION

Statistics of pitch have recently been used as prosodic fea-
tures in speaker recognition systems with good results and
have proven to be more robust than cepstra to acoustic
environmental mismatches [1]. Also, in the context of ob-
jective measures of speaker recognizability, pitch statistics
have been shown to be among the best descriptors, mean
pitch being the most descriptive feature [2]. In this work,
we address the problem of unbiased estimation of pitch
statistics using data from imperfect pitch trackers subject
to halving/doubling. Prior work {1] has assumed a Gaus-
sian distribution for clean pitch and addressed the pitch
doubling/halving by hard thresholded outlier elimination.
Pitch histograms, however, reveal the skewed nature of the
distribution. In this work, we argue via a simple correla-
tion model for pitch and show by quantile plots that the
clean pitch has a lognormal distribution, i.e. the logarithm
of the clean pitch has a Gaussian distribution. Regarding
the pitch tracking errors, we propose a probabilistic model
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Figure 1. Auditory-model-based pitch tracker

of pitch halving/doubling that results in a lognormal tied
mixture distribution for the estimated pitch with four free
parameters. We use an auditory model based pitch tracker
[3] which uses a model of cochlear filtering to compute
autocorrelation-like functions and dynamic programming
for tracking and voiced/unvoiced decisions. We use the ob-
tained pitch statistics in a parallel cepstrum/pitch speaker
verification system and report results on the March 1996
NIST dataset.

2. PITCH TRACKER

The pitch tracker used in this work (see Fig. 1) is based ona
model of cochlear filtering and computes autocorrelation-
like functions of the pitch lag for multiple frequency bands
followed by two stages of dynamic programing for pitch
period estimation and voiced/unvoiced decisions [3].

A summary of key steps in the processing is as follows:
(i) Filtering of the waveform using 14 different bandpass
filters to allow pitch tracking of vowels with small residu-
als or with one very strong formant,

(ii) Computation of autocorrelation-like function using
each of bandpass filters in order to preserve/enhance am-
plitude modulation,

(iii) Subtraction of autocorrelation-like function of white
noise from each channel in order to normalize the autocor-
relations,

(iv) Summation of different normalized autocorrelation
vectors from each channel to obtain the frame normalized
autocorrelation function,

(v) Dynamic programming to compute pitch track,

(vi) Computation of maximum "periodicity” at pitch pe-
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riod to allow for rapid amplitude changes,
(vii) Dynamic programming for voiced/unvoiced decision.

3. DISTRIBUTION OF PITCH

Prior work on pitch for speaker identification has assumed
that pitch has a normal distribution [1]. Pitch histograms,
such as the one in Figure 2(a) for a single female talker,
however, indicate that the pitch distribution is skewed.
The plot of the Quantiles of the normal distribution vs.
the Quantiles of the pitch data (QQ plot) in Figure 2(c)
clearly shows (the deviation from the y = z line) that the
tails do not match. In the same figure, we show that the
lognormal distribution fits pitch histograms much better
than the normal distribution, i.e.

log(Fo) ~ N(u.,c?). ¢))

100 200 300 400

Figure 2(b) depicts the histogram for the logarithm of the
pitch which is symmetric, and the QQ plot in Figure 2(d)
demonstrates a very good fit between the quantiles of the
data and those of the lognormal distribution.

We also present the following adaptation of Gibrat’s ar-
gument [4] for the plausability of the lognormal as the
distribution of the pitch. Denote the pitch periods as T;,,
n=12,....,N. Given T, and T,,_; are highly corre-
lated, assume a model of the form:

Tn:(1+Xﬂ)Tn—l: n:l,2,..,,N, (2)

where {X, } is a sequence of independent random vari-
ables small in magnitude compared to 1, whose distribu-
tions are not known. In fact, the dynamic programming
formulation for pitch period estimation allows for such a
model. Then, T, can be written as

T =To [J(1+ X3) 3)
k=1

which, because X, is much smaller than 1, simplifies to

N

= log(Tp) +ZXk- 4)
k=1

log(7,)

One immediately observes by the Central Limit Theo-
rem that log(7},) tends to a normal distribution for large
n. Therefore, pitch periods are lognormally distributed:
log(T) o< N(p,o?). Then, pitch, Fy, with the model (2)

log(Fo) = —log(f,) — log(T) o< N(—log(f,) — p.c?)
)

is also lognormally distributed.

4. LOGNORMAL TIED MIXTURE

In the previous section, we demonstrated that lognor-
mal is a suitable distribution for clean pitch, Fo. Now,
we consider estimated pitch, denoted by Fy, which has
been exposed to halving and doubling. We propose the
following probabilistic model: Let Fy = f(Fp) where
log(Fy) ~ N(u.c?) and f is a probabilistic mapping
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This results in the following lognormal tied mixture (LTM)
model for the observed pitch distribution:

log(Fo) ~ LTM(a, B, pt.0) = )
B N(u—1log(2).0%) +a- N(u,o?
+(1 —a—B)- N(u+log(2).0?)

Expectation-Maximization (EM) algorithm is used to esti-
mate the parameter vector (a, 3, u. o). Figure 3 shows (a)
the parameters and (b) the log-likelihood vs. EM iterations
and the obtained models for (c) pitch and (d) log-pitch of a
single female talker in Switchboard. Convergence is very
fast because of the small number of free parameters in the
model.
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5. SPEAKER RECOGNITION SYSTEM 0.2 vk s
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The block diagram of the system is shown in Fig 4. In

the front-end Fy is computed by the pitch tracker and then
transformed to log domain. Tied mixture estimation pro-
duces the parameters of the LTM for comparison with the
model parameters estimated off-line from a training utter-
ance 2 minutes in duration. The relative entropy between
the main (full-voice) modes of the pitch distributions of
the model and the utterance is computed as the final score
for the pitch system.

The complementary spectral speaker recognition system
includes a cepstrum based front-end, EM-trained Gaus-
sian mixture speaker models (GMMs), and a speaker-
independent GMM for score normalization. Speech seg-
mentation is accomplished with selection of the top 75%
frame-based likelihood ratio scores. Features for the
cepstrum-based system are 27 mel-cepstral coefficients
computed from a 25 ms window with a frame rate of
10ms, via a filterbank with 28 trapezoidal-shape filters
over a warped frequency scale with cepstral mean sub-
traction over the utterance. The log-likelihood scores of
the cepstral system and the relative entropies of the pitch
distributions are combined to obtain the overall score.

6. DATABASE

The database we used in our experiments is the March 1996
NIST Speaker Recognition Evaluation. This database is
a subset of Switchboard, a conversational-style corpus of
long distance telephone calls. The subset consists of 40
claimant speakers (21 male, 19 female) and approximately
400 impostor speakers (200 male, 200 female). There are
three training conditions for each claimant speaker: “one-
session” (all training data from one phone call, i.e., one
handset), “one-handset” (training data from two phone
calls, but with one handset), and “two-handset” (training
data from two different handsets). Each training condi-
tion uses 2 minutes of training speech from the claimant
speaker. There are two testing conditions: “matched” and
“mismatched” telephone numbers, referring to whether or
not the telephone used during testing was the same as
that used in training. The results reported in this paper
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Figure 5. Speaker detection curves for iterative av-
eraging (solid) and LTM estimation (dashed)
Feature 1% FAR 10% FAR EER
Set mat |- mis | mat | mis | mat | mis
Pitch 84.8 | 87.1 | 475} 68.1 | 29.3 | 329
Cepstrum | 189 | 73.9 2.7 | 420 59 1 20.2
C+P 14.7 | 59.9 24 | 348 531 19.6

Table 1. Speaker verification results

are focused on the most difficult portion of the database:
the “one-session” condition with males only for both the
claimant and impostor speakers. Both test conditions over
the 30-second duration utterances are reported.

7. RESULTS AND FUTURE WORK

The LTM estimation produces a modest but consistent
gain over iterative outlier elimination described in[1]. The
speaker detection results for both techniques are shown in
Fig. 5. LTM uses statistics of halved/doubled datapoints
and also produces the ratio of pitch halving to integral
pitch. The rate at which a given speaker produces creaky
speech (or vocal fry) during spontaneous speech (which
is the main reason for pitch halving) is expected to have
further discriminating power. Our model produces this
rate as the ratio o/ 3: Future work will include the “vocal
fry rate” as an additional feature.

The speaker detection results for the complete system
are shown in Figures 6 and 7 for the matched telephone
number case (Fig. 7) and the mismatched telephone num-
ber case (Fig. 8). Numerical results are reported in Table
1 in terms of false alarm rates (FARs) at 1% and 10% miss
rates, and equal error rates (EERs) for both the matched
and mismatched cases. There is a remarkable gain in per-
formance in both cases, with the gain in the mismatched
case significantly larger: 22% reduction in false alarm rate
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Figure 6. Matched telephone number speaker de-

tection curves: Pitch (top), Cepstrum (middle), C+P
(bottom)
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Figure 7. Mismatched telephone number speaker

detection curves: Pitch (top), Cepstrum (middle),
C+P (bottom)

at 1% miss rate and 11% reduction in false alarm rate at
10% miss rate over the cepstrum-only system. This is a
direct result of the fact that pitch is affected much less
by the transducer characteristics (carbon-button vs. elec-
tret) than cepstrum which is evident from the pitch-only
performances in both cases.
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