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ABSTRACT

Speaker verification based on phone modelling is exam-
ined in this paper. Phone modelling is attractive, because
different phonemes have different levels of usefulness for
speaker recognition, and because phone modelling essen-
tially makes a speaker verification algorithm text inde-
pendent. The speaker verification system used here is
based on a two stage approach, where speech recognition
(segmentation) is separated from the actual speaker mod-
elling. Hidden Markov Models are employed in the initial
stage, whereas Radial Basis Function networks are used
in the second for modelling speaker identity. The system
is evaluated on a large realistic telephone database.

1 INTRODUCTION

For speaker verification it is not necessary to explicitly
model linguistic units such as phonemes or words, be-
cause a speakers identity does not depend on the linguis-
tic content of a test utterance – at least it is undesirable
to model speaker characteristics at this level. However,
phone modelling is nevertheless advantageous because
different phonemes carry different amounts and kinds of
speaker information [1]. Each phoneme may be regarded
as providing information about one aspect of the speaker
(configuration of the articulators). Hence, to obtain a
“complete” picture of the speaker, it is necessary to look
at a broad range of different phonemes.

When basing a speaker verification system on phone
modelling, it is characteristic that target speakers may
have several good (dangerous) impostors for each
phoneme under consideration, but that these impostors
vary from phoneme to phoneme; ie. being a good im-
postor for one phoneme does not guarantee being a good
impostor for a different phoneme. Target speakers, on
the other hand, are able to validate their identity claims
using, basically, any phoneme [2].

Speaker verification is a binary decision problem, and
can therefore in the end be reduced to computing a score
and verifying identity claims by determining whether or

not the score is greater or less than a given threshold, t:

Decide

�
accept if score > t
reject otherwise

(1)

When computing this score, each phone segment in the
speech signal makes a contribution (even when phones
are not explicitly modelled). In a conventional text inde-
pendent speaker verification algorithm, the contribution
of the different phonemes to the overall score (eg. utter-
ance likelihood) is unknown; the overall score depends
on the particular frequency with which the phonemes are
represented in the test utterance, and on the duration of
each phone segment. This is clearly not optimal, since no
regard is taken to the extent that local scores contributed
by individual phone segments express speaker identity
and the extent to which different phonemes express the
same information about the speaker; eg. a nasal and a
vowel presumably represent information which is largely
complimentary whereas two back vowels, say, represent
highly correlated information about the speaker.

2 METHOD

The algorithm described here has two parts: first phone
segments are identified and the speaker identity modelled
for each phoneme independently. The result of this is a
number of local scores – one for each different phoneme
in the test utterance – which subsequently must be com-
bined in order to produce a global verification decision
(equation 1).

2.1 Phone Modelling

The basic method for making phoneme dependent local
verification decisions was introduced in [2] (see figure
1 below). Briefly, a two-stage approach is used where
phone segments are identified in the first stage by means
of forced Viterbi decoding of the test utterance using
speaker independent Hidden Markov Models (HMMs).
This is relatively easy to do, because the application con-
sidered here is text prompted speaker verification; hence
the spoken text is already known, and only pronuncia-
tion ambiguities need to be resolved. Variable frame rate



coding is used for representing each phone segment by a
fixed number of frames, which are concatenated to form
a “phone” vector,~�, which then is subjected to a linear
transformation of the speaker and phoneme dependent
Fisher transform [2]:

~�
0 = AT ~� (2)

The Fisher transform is a discriminative transform, which
requires a number of training impostors to be available
when it is estimated: one impostor for each basis vector
in the transform (the columns ofA). Fisher’s linear dis-
criminant function is used for computing the basis vectors
of the transform:

~ai = U
�1
i (~�1 � ~�2;i)

T (3)

where~�1 is the mean phone vector for the target speaker,
~�2;i the mean phone vector for impostor speaker number
i, andUi the pooled phone vector covariance matrix for
the target speaker and impostor speaker numberi. The
individual basis vectors,~ai, in the transform are orthogo-
nalised using the Gram-Schmidt process [3].

After being transformed, a phone vector,~�0, is passed
as input to a phoneme dependent Radial Basis Function
(RBF) network, which is used for computing the speaker
probabilities:P (I j~�0) andP (:I j~�0), whereI is the tar-
get speaker class, and:I the impostor speaker class.
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Figure 1: Model architecture: speaker independent
HMMs are used for identifying phone segments; RBF
networks for verifying the speaker identity.

The RBF networks compute the functiong�(~�0):

g�(~�
0) = tanh

(
S

X
i

wi exp
�
Ci

(~�0 � ~�i)
2

~�2i

�)
(4)

where~�i and~�2i make up a codebook of centroids and
corresponding variance vectors,S is the scaling factor of
the activation function (tanh()), Ci a set of basis func-
tion scales and finallywi a set of basis function weights.
These parameters are determined by a gradient descent
based error minimisation algorithm. It can be shown [4]
that the RBF networks approximate the Bayes optimal
discriminant function

g�(~�
0) � P (I j~�0)� P (:I j~�0) (5)

From this equation it is easy to compute the estimated
probabilities for the target speaker,P (I j~�0) and the im-
postor speakerP (:I j~�0) given the phone vector,~�0.
Two or more observations of a given phoneme,�(r) =
~�
0
1; : : : ;

~�
0
r, can be combined to obtain more reliable

speaker probability estimate for that particular phoneme:

P (I j�(r)) =
1

1 +
Qr

i=1

g�(:Ij~�0

i
)

g�(Ij~�0

i
)

(6)

In this way a speaker probability can be computed for
each of the phonemes for which there are observations in
the test utterance.

2.2 Decision Making

Each RBF network can be regarded as a speaker verifi-
cation expert for a particular kind of phoneme. In order
to produce a global verification decision, the local expert
opinions must be combined into a global score, which can
be used in connection with equation 1. A simple way of
doing this is to use a principle of voting:

score=

#�X
8c=1

�
P (I j�(r)c )� P (:I j�(r)c )

�
(7)

where the summation is over all phonemes represented
in the test utterance (usually less than the total number of
phonemes in the alphabet) andr is the number of obser-
vations of phoneme�c.

2.2.1 Phoneme Correlations

The scoring procedure can be improved by weighting
the votes of the individual experts differently. Different
experts represent different information about the speaker,
but this information is not necessarily orthogonal: dif-
ferent phonemes may, at least partly, represent the same
speaker information.



The correlation between two variables,x andy, can be
measured by the correlation coefficient,r:

r =
1

N

NX
i=1

(xi � �x)(yi � �y) (8)

wherexi andyi are observations of respectivelyx and
y, and where�x = 1

N

PN

i xi and�y = 1
N

PN

i yi. Equa-
tion 8 can be used for defining a correlation coefficient
for vector variables:

R~x;~y =
1

D

DX
d=1

jrd(~x; ~y)j (9)

whererd(~x; ~y) is the correlation between the d’th com-
ponent of vector variables~x and~y (assumes that~x and~y
have the same dimensionality).

The idea is now to use equation 9 for computing the cor-
relation between different phonemes, and use the corre-
lation information for giving higher weightings to expert
opinions, which represent information that is relatively
uncorrelated with the other experts. The correlations
are computed between the phone vectorsafter the Fisher
transform has been applied, ie. after information which is
primarily not speaker discriminative has been discarded.
A weighting scheme which satisfies the above require-
ments is:

m�c
= 1 +

#�X
i=1;i 6=c

#�X
j=i+1;j 6=c

R�i;�j
(10)

wherem�c
is the weight for the expert vote representing

thec’th phoneme in the alphabet, that also is represented
in the test utterance;#� denotes the index of the last
phoneme in the alphabet, which also is represented in the
test utterance. Hence, the improved scoring rule is:

score=

#�X
8c=1

m�c

�
P (I j�(r)c )� P (:I j�(r)c )

�
(11)

3 SPEECH DATA

In this work, the Swedish Gandalf database [5] was used.
The database contains speech recorded over the public
telephone network; 58 speakers — 35 male + 23 female
— made at least 23 telephone calls (sessions) over a one
year period. In addition to this, the database contains
an impostor part where 77 impostors — 49 male and 28
female — were recorded. The speech items from Gan-
dalf that were used in these experiments consist of varied
sentences, with on average seven words per sentence.
The sentences prompted for in the test sessions, were not
represented in the training sessions.

The speech data was parameterised as the logarithmic
energy outputs of a filter bank with 24 triangular filters

spaced linearly along the logarithmic mel scale; each fil-
ter overlapped 50% with each of its two neighbours. The
total log energy in the frame normalised by the utterance
energy was appended to each feature vector; feature vec-
tors were extracted using a 25.6 ms Hamming window
and a 10 ms frame period.

The HMM phone models used for segmenting the speech
all had three emitting states; the variable frame rate cod-
ing procedure represented each phoneme by just three
frames: one frame for each of the emitting states. Hence,
after the first stage, the resulting feature (phone) vec-
tors were 75 dimensional. The phone vectors were nor-
malised to have norm one (in order to eliminate the signal
gain), and subjected to a Fisher transformation [2], after
which the dimensionality was reduced to 30. The Fisher
transforms were estimated using the first (according to
speaker ID) 30 training impostors of the same gender as
the target speaker.

4 PHONE MODELS

The HMM phone models were context, speaker and gen-
der independent. They were trained from the speech
in target speaker sessions 1–2 + all the calls from 25
speakers who nominally belonged to Gandalf’s target
speaker set; these speakers were not, however, used as
target speakers here, because they did not complete at
least 23 recording sessions. Each HMM phone model
had up to ten mixtures per state. For the purpose of cre-
ating a segmentation, the filter bank representation of the
speech signal was, here, transformed into 12 MFCCs +
normalised log energy + 13 delta + 13 acc. coefficients.
Hence, different feature representations were used for
speech and speaker recognition.

The RBF phone models were trained, for each target
speaker, from up to 72 utterances recorded over a four
month period (sessions 1–15); utterances where the spo-
ken text differed from the text that was prompted for were
removed. The test data was recorded in a number of calls
(sessions 17–28) over the 6–11 months following the last
training session. A number of different handsets were
represented in the training calls (for each target speaker);
all the target speaker test calls were from the so called
favorite handset, which was used in approximately 50%
of the training calls. Up to 30 RBF phone models were
trained for each target speaker; a model was not trained if
the number of training tokens from the target speaker was
less than 10. The number of basis functions in each RBF
model was adjusted to fit the number of training tokens:
each model had2(bN=20c+1) basis functions, whereN
is the number of training tokens from the target speaker.
When training speaker models, the other target speakers
were used as “training impostors” as was the above 25
speakers who were excluded from the test sets.



5 RESULTS & DISCUSSION

Using scoring rule 7 the target speaker acceptance (TA)
and impostor speaker rejection (IR) error rates were re-
spectively 3.0% (68/2233) and 3.0% (266/8786). Only
impostors of the same gender as the target speaker were
used, ie. male impostors were not used for female target
speakers and vice versa. The value of the threshold (equa-
tion 1), was here fixed a posteori to the valuet = 0:1#�,
where again#� is the number of different phonemes
represented in a test utterance; the same threshold was
used for all the speakers, and the results are therefore not
“equal error rates”.

Using scoring rule 11 the error rates were respectively
2.9% (65/2233) and 2.7% (241/8786); a small, but clear
improvement over the case when phone correlations were
not taken into account. In this case the threshold was
fixed a posteori tot = 0:45#�.

An interesting question is whether all phonemes are
useful for speaker modelling, or whether it is better to
ignore some phonemes when doing speaker verification.
Table 1 shows the error rates when decisions are based
only on phonemes belonging to specific phoneme classes
(scoring rule 7 was used).

Phoneme Class TA (%) IR (%)
Plosive (plc): /p/, /b/, /t/, /d/, /k/, /g/ 11.4 9.7
Fricative (frc): /f/, /s/, /S/, /h/, /v/ 12.5 11.5
Nasal (nas): /n/, /m/ 12.8 11.4
Liquid (lqd): /l/, /r/, /j/ 13.5 15.8
Unr. Front Vowel (ufv): /I/, /e/, /e:/, /a/, /a:/, /{:/ 5.3 9.0
Central Vowel (cv): /@/ 27.2 15.1
Rnd. Front Vowel (rfv): /Y/, /2/, /9/ 85.0 0.3
Back Vowel (bv): /O/, /o:/, /u0/, /U/ 26.0 11.4
plc+frc 7.4 6.9
plc+frc+nas 4.5 4.7
plc+frc+nas+lqd 3.5 4.2
plc+frc+nas+lqd+ufv 2.1 3.6
plc+frc+nas+lqd+ufv+cv 2.2 3.4
plc+frc+nas+lqd+ufv+cv+rfv 2.7 3.2
plc+frc+nas+lqd+ufv+cv+bv 2.6 3.2
plc+frc+nas+lqd+ufv+cv+rfv+bv 3.0 3.0

Table 1: Speaker verification error rates when decisions
are based on phonemes from selected phoneme classes.
Phoneme labels are in SAMPA notation [6].

As an evaluation of the usefulness of different phonemes,
table 1 is not fair in the sense that the different phoneme
classes have very different frequencies of occurrence in
the test utterances, and simultaneously, the number of
training tokens for each RBF phone model varied greatly,
which allowed “complex” models to be trained for some
phonemes (eg. /n/), but only simple models for others
(eg. /9/). The table, however, shows that all phonemes
are useful for speaker verification – also the “ill-reputed”
fricative and plosive consonants: all phonemes can be
used for reducing the global error rates.

In general phone models with low equal error rates can
be trained even when only few (10–20) training tokens
are available from a given target speaker, but in that case

it is difficult to construct a model which will approximate
closely the equal error rate on the test data (without ac-
tually “tuning” the model on the test data). The rounded
front vowels (/Y/, /2/ and /9/) in table 1 is a good example
of this.

6 CONCLUSIONS

Adjusting individual phone models to achieve the desired
balance between the TA and IR error rates can be difficult
if the number of training tokens is small, but fortunately,
voting rules 7 and 11 are robust against this; it is unlikely
that all models have the same bias, and individual mod-
els have only a relatively small influence on the overall
classification decision; biases tend to be averaged away.

Taking the correlation between different phonemes into
account is a useful and computationally cheap way of im-
proving the error rates of a phone based speaker verifica-
tion system. The phone models used in these experiments
were context independent, and in general correlations be-
tween different phonemes were not very strong (typically
1–5%). To some extent this may be due to the correlation
measure (equation 9) used here, which only considered
“component to component” correlations within the phone
vectors.
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