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SLOVENIA

This paper presents an effort to provide a more efficient
speech signal representation, which aims to be incorpo-
rated into an automatic speech recognition system. Mo-
dified cepstral coefficients, derived from a multiresolu-
tion auditory spectrum are proposed. The multiresolu-
tion spectrum was obtained using sliding single point dis-
crete Fourier transformations. It is shown that the obtained
spectrum values are similar to the results of a nonuniform
filtering operation. The presented cepstral features are
evaluated by introducing them into a simple phone recog-
nition system.

: Speech Signal Features, Multiresolution Au-
ditory Spectrum, Cepstral Coefficients

Speech processing for speech recognition is a perceptual
signal analysis. Its goal is to identify a relatively small
number of perceptually significant speech signal features.
In general, such features are of finite extent in time and
there may be several in any given time interval. Conven-
tional feature extraction methods, used within the “state of
the art” speech recognition systems are based on the short-
term features in conjunction with dynamic features [3, 5].
All these features, merged in a feature vector, are usually
of the same extent in time.

It is known that speech signals exhibit many non-
stationary phenomena which are reflected in some local
properties of a signal. Using only a fixed-window si-
gnal analysis, these local properties are poorly described.
This is the reason, why multiresolution signal analysis
was introduced [10]. Wavelet transforms have become
well known as useful multiresolution tools for analysis
of signals [4, ]. Another successful tool for multireso-
lution analysis, which has also inspired our research, is
the multiresolution Fourier transform [10]. These meth-
ods have been successfully used for many signal process-
ing applications. However, in the speech recognition do-
main both transforms are still being explored to develop a
better speech signal representation [1].

We decided to investigate the multiresolution concept and
to try to incorporate it into the procedure of deriving
the well known cepstral features, which are widely used
within successful speech recognition systems [11].

In the following sections, we present an approach for de-

termination of the multiresolution auditory spectrum, the
cepstral features derived from this spectrum, and finally,
we evaluate the presented features through results of a sim-
ple phone recognition task.

One of the basic signal representations is its spectrum. An
important consideration to be taken here is the equivalence
between a spectrum measurement and the output of a filter
(for a single spectral point) or a bank of filters (for multiple
spectral points) [8]. Consequently, we can notice that the
Discrete Fourier Transformation (DFT) represents spec-
trum measurements for the equally spaced spectral points
and according to the above consideration it actually equals
the output of a bank of uniform filters.

Figure 1:

Spectral measurement is usually evaluated over a certain
number of signal samples. If denotes the number
of samples and denotes the sampling interval then the
spectral measurement ( ) of a sampled signal ( ) =

( ) at position can be defined according to the fol-
lowing equation.

( ) = ( ) (1)

As mentioned above this spectral measurement corre-
sponds to the output of a particular filter. It can be shown
that by varying the number the effective bandwidth of
the filter is changed. The filter shape may be also altered
by introducing a window, ( ) = ( ), that multiplies
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Single spectral point measurements and magni-
tude responses of the corresponding filters.
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each term in the selected portion of the signal.

( ) = ( ) ( ) (2)

Figure 1 illustrates single spectral point measurements and
the magnitude responses of the corresponding filters. In
this example the measurements are done using the Ham-
ming window function.

The speech signal spectrum constantly changes with time.
In general, spectral measurements should be repeated for
each successive signal sample. This type of measurement
is so called sliding or running spectral measurement and
is computationally inefficient. However, the efficiency
can be improved using the standard method that allows
computation of running spectra approximately by hopping
rather than by sliding analysis window. The hopped mea-

Figure 2:

surement is simply a sampling of sliding measurements.
To reduce the effect of folding the analysis windows have
to overlap and the 2:1 overlap seems to be a reasonable
choice [8]. Figure 2 shows how the successive single
point spectral measurements are actually computed. It can
be seen that a complete calculation for all measurements
within a frame of samples requires 2 complex sum-
mations of products.

The auditory spectrum is “auditory” in the sense that it
has a nonuniform frequency resolution, and that the res-
olution is defined according to some parameters of the
human auditory system [2, 12]. The nonuniform fre-
quency resolution is usually obtained using nonuniform
filterbanks. Such filterbanks are defined within the com-
putational models of the human auditory system [9]. It
can be also implemented using the Wavelet transforms [7].
However, these two approaches have some disadvantages.
The first one requires heavy computational load and the
second one becomes complicated when an arbitrary time-
frequency resolution is required.

As mentioned before, the conventional DFT represents
spectrum measurements for the equally spaced spectral
points and it corresponds to the output of a bank of uni-
form filters. The nonuniform filterbank can be obtained

by implementing a large uniform filterbank and then the
nonuniformity is created by combining two or more sub-
sequent uniform channels. These combinations can take
many forms. The most popular is the triangular weighted
sum of subsequent uniform channels. This approach is
widely used for determination of speech signal features
due to the Fast Fourier Transformation (FFT) algorithm,
which is used for the DFT calculation and is computation-
ally very efficient.

Figure 3:

Unfortunately, the above approach has also a disadvan-
tage. The problem is in the fixed time resolution of the
FFT. The auditory spectrum should have not only nonuni-
form frequency resolution but also nonuniform time reso-
lution [12].

We decided to fulfil this requirement by using the already
discussed single point spectral measurements. We care-
fully designed each measurement and the corresponding
filter. As described before, each filter can have its own ef-
fective bandwidth and each bandwidth represents the du-
ration of a corresponding analysis window. Consequently,
a nonuniform frequency resolution and a nonuniform time
resolution are achieved simultaneously.

Figure 4:

Figure 3 illustrates an example of a nonuniform time-
frequency resolution obtained by a set of 40 single point
spectral measurements, which are based on the Hamming
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Calculations of hopped spectral measurements.

The nonuniform time-frequency resolution ob-
tained by a set of single point spectral measurements.

The magnitude response of the filterbank and its
composite magnitude response.
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window function. In this particular example, the spectral
points are spaced according to the BARK scale [12]. In
Figure 4 the magnitude response of the filterbank and its
composite magnitude response are depicted.

The actual auditory spectrum we propose represents log-
power values of the discussed spectral measurements. Fig-
ure 5 shows an example of the multiresolution auditory
spectrum of a speech signal.

Figure 5:

A frame of the auditory spectrum can be used as a feature
set for speech recognition. However, these numerous fea-
tures are expected to be highly correlated. The additional
discrete cosine transform (DCT) applied to the log-power
spectrum is usually used to reduce the number of features
and, furthermore, the derived cepstral ceofficients are ex-
pected to be more uncorrelated.

Figure 6:

The conventional cepstrum coefficients are derived by tak-
ing the DCT of the log-power of the filterbank output. If
the filterbank output is obtained using the DFT then the co-
efficients are derived by taking the DCT of the short time
log-power spectrum. The question is, how the DCT can
be applied to the multiresolution spectrum.

The multiresolution auditory spectrum has higher time
resolution for high frequency spectral measurements and
lower time resolution for low frequency spectral measure-
ments. This means that there are more subsequent mea-
surements for high frequencies than for low frequencies
within a period of time. The conventional spectrum val-
ues approximately equal average values of the subsequent
measurements within a frame. However, this averaging
eliminates the most important feature of the auditory spec-
trum, which is its ability to describe some local properties
of a speech signal.

On the other hand, the average value can be treated as a
zeroth order coefficient of the additional DFT applied to
the subsequent measurements, and there is no theoretical
constraint to introduce the additional higher order coeffi-
cients, which are expected to describe local properties of a
signal. In general, this DFT coefficients are complex and
for speech signals it is reasonable to take only the ampli-
tude information.

Figure 6 illustrates how the cepstral coefficients are calcu-
lated from the multiresolution auditory spectrum. In Fig-
ure 6 denotes the number of subsequent single point
spectral measurements, ( ) , within a speech signal
frame, and ( ) denotes the absolute value of the o-
th order coefficient of the DFT applied to these measure-
ments.

Finally, the DCT of the obtained absolute values gives the
required cepstral coefficients ( ). It can be seen from
the equations in Figure 6 that the zeroth order ( = 0)
cepstral coefficients are approximately equivalent to the
conventional cepstral coefficients and that the higher or-
der ( 0) cepstral coefficients represent local properties
of the signal frame, especially for high frequency measure-
ments.

For the very first evaluation of the presented features we
used a simple phone recogniser, which is based on the
Gaussian mixture probability density functions (pdf). The
pdf parameters were initialised using the K-means algo-
rithm and estimated using the EM-algorithm. The speech
database, used for model parameters estimation, consists
of 1512 utterances of 6 speakers (3 males and 3 females).
The database corpus consists of 252 unique phonetically
balanced words and short phrases. Speech signals are la-
belled by 33 phone classes. Each vowel class was mod-
elled using 5 component densities and all the other classes
were modelled using 3 component densities.

Recognition results of the phone recogniser were com-
pared for different types of features. The conventional
mel-frequency cepstral features (MFCC) were derived us-
ing the Hamming window, 1024 point FFT and 40 mel-
scaled triangular filters. The cepstral feature vectors were
generated with the frame shift of 8 ms and the frame dura-
tion of 24 ms.

The multiresolution auditory spectrum had 40 mel-scaled
spectral points. The spectral measurements were derived
from the hopped Hamming windows with a 2:1 overlap.
The actual selection of multiresolution cepstral features
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The multiresolution auditory spectrum of a
speech signal.

The cepstral coefficients derived from the mul-
tiresolution spectrum.
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(MRCC), derived from the multiresolution spectrum, was
defined experimentally. Due to space limitations we can
present only the most important results. Table 1 shows
the recognition results for feature vectors with 12 features
and table 2 the results for feature vectors with 24 features.
Table 1 contains recognition results for the MFCC features

Table 1:

with the frame duration of 24 ms, and for the MRCC fea-
tures with the frame duration of 32 ms. The MFCC feature
vectors consist of log power and the first 11 cepstral coef-
ficients. The MRCC consist of log power, 8 zeroth order
( = 0) multiresolution coefficients ( = 4 11) and 3
first order ( = 1) multiresolution coefficients ( = 1 2 3).

Table 2:

Table 2 shows the recognition results for the MFCC fea-
tures with the same frame duration of 24 ms, and for the
MRCC features with the frame duration of 64 ms. The
MFCC feature vectors consist of log power, first 11 cep-
stral coefficients, and their first derivatives. The MRCC
vectors consist of log power, 11 zeroth order ( = 0)
multiresolution coefficients ( = 3 13), 8 first or-
der ( = 1) multiresolution coefficients ( = 1 8),
and 4 second order ( = 1) multiresolution coefficients
( = 1 4).

The above results show the main advantage of the pre-
sented cepstral features, which lies in their ability to de-
scribe local properties of speech signals. When we use the
conventional cepstral features then stretching of a signal
frame improves the recognition rate for vowels but reduces
recognition rate for other more instantaneous phonemes.

On the other hand, the feature vectors composed from the
presented cepstral coefficient improve the recognition re-
sults for all groups of phonemes when a signal frame is
stretched.

Cepstral features derived from the multiresolution audi-
tory spectrum have been proposed. Presented features
are an extension of the conventional cepstral coefficients
and have proved to be very promising for describing lo-
cal properties of speech signals. Simple phone recogni-
tion tests demonstrated that some experimentally defined
selections of the presented features outperform the con-
ventional cepstrum.
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