
A Speech Interface for Forms on WWW
Sunil Issar

Department of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213 USA

E-mail: si@cs.cmu.edu

ABSTRACT

There is a wide variety of forms that a user encounters
on the world wide web (WWW). In this paper, we
describe the design of a speech interface that can be used
over the web to fill forms. This presents several
problems, for example, communicating with speech
recognizer, parsing one or more forms embedded in text,
generating appropriate language models and dictionary
entries, and presenting appropriate information
(responses and queries) to the user.

Many database and non-database retrieval tasks can be
viewed as form-filling tasks. Goddeau [2] also describes
a form-based dialogue manager for spoken language
understanding tasks. This tends to support our belief that
a speech interface for forms is an important first step in
the design of distributed spoken language systems,
which can assist the user in problem solving activities.

1. INTRODUCTION
Spoken language understanding systems have mainly
focused on specific tasks ([1], [7]), for example, airline
travel. It is difficult to build spoken language
understanding systems because it requires integrating
speech recognizer and natural language understanding
system. The application developer also needs to specify a
dialogue manager that manages interaction with the user.
The application development is further complicated by
the shortcomings in these underlying technologies. Some
problems arise because of errors in speech recognition
output and complexities of parsing spontaneous speech,
which may not be fluent at sentence level. In addition,
many human computer interaction issues need to be
addressed because the spoken language understanding
system may have its own model of interaction (for
example, when to speak) and the user is not aware of
system limitations. We also need to systemize the
development of dialog manager since present approaches
[2] are not very portable.

We are trying to develop a spoken language toolkit,
which will simplify the task of developing spoken
language applications by automating routine tasks. The
developer would specify information at the task (for
example, flight information task) level:

• Required (depart location) and optional (arrival
time) fields

• Relative importance (From, To, Date, Time)

• Query: What time would you be leaving?

• Algorithm for canonical representation (7:00 PM −>
1900 hours)

• Database Interface (Depart Time 1900 −>
flight.departure_time = 1900)

• Action: What do you do when the form is filled or
when the user submits the form?

The developer need not know how to build language
models, parse user input or tune the speech recognizer.
The toolkit would also provide a uniform user interface
for different tasks, and avoid reinventing the wheel in
different contexts. The dialogue manager would be based
on speech-enabled forms.

A form is a collection of text fields, check boxes (yes/no
answers), radio buttons (select one or more options) and
other information items. HTML provides a standard
specification for these forms. Commercial browsers (for
example, Netscape, Internet Explorer) can parse and
display them. Many database retrieval (for example,
ATIS) and non-database (for example, Secretarial
Assistant) tasks can be viewed as form filling tasks. The
user fills the required fields and one or more optional
fields in any order and can then submit the form. The
system prompts the user for necessary information, fills
in defaults for unfilled fields based on current state, and
provides an appropriate response when the form is
submitted. This interaction provides a simple model for
mixed-initiative dialogue, which can be used to help
users. In addition, the user responses may be terse,
because the user is filling in specific information. Hence,
there may be less disfluencies and hesitation. This may
avoid some problems associated with spontaneous
speech tasks. We can also use very specific language
models to improve speech recognition performance. This
paradigm provides a systematic way of extracting
information and interacting with the user. We believe
speech-enabled forms provide a first step towards a
simple dialogue model that can be used in a variety of
spoken language understanding tasks.

Speech research is data driven: we need lots of data to
train acoustic and language model in a new system.
Sphinx interface [5] to the TRAINS system provides an
example of using language model trained on data from a
different domain (ATIS). However, this approach
degrades the performance of recognition system. We are
building shared libraries of common components (for
example, What, When, Where, Why, Who, How, Date,
Time, Location) that can be used in different domains.
This also avoids repeated effort in different tasks. In

particular, it will provide a collection of language models
and phoenix grammars that can be used in the form-
filling task.

In this paper, we will first describe the system
architecture, then look at the current system that can be
accessed over the WWW, and finally describe future
work aimed at improving the performance of the system.

2. SYSTEM ARCHITECTURE

Figure 1 shows the overall structure of the system. This
system is being designed to run many different
applications, which include a form filling application.

We use a Java applet for user interface. This allows the
user interface to be platform-independent. It is loaded in
the browser at run-time. The applet connects to a user
agent. It sends user interface events, for example, start
recording, and fix decoder hypothesis to the agent. It
receives various messages (for example, URL to fetch
from WWW, recognition output, help messages) that
need to be displayed to the user. We use a plugin for
audio input and output, since the applet cannot access the
audio device. The applet communicates with the plugin
(for example, connect to user agent). The user can also
replay the last utterance and fix recognition errors.

The plugin provides audio input and output capability,
and can also do front end processing (cepstral
computation, adpcm compression). It can send speech
data to the user agent in 1 of three ways: raw samples
(256kb/sec), adpcm (64kb/sec) or cepstral coefficients.
It also receives audio data (system response or query)
and plays it.

The user agent mediates between the user (interface),
decoder and various applications. It sends speech data to
the recognizer, speech output, typed input, or corrections
in speech output made by user to the application, and
sends application response and decoder output to the
user interface (applet). It also uses pre-recorded
responses or text-to-speech sythesizer (TTS) to generate
audio output.

We use the Sphinx-II speech recognizer [4], which is a
continuous–speech, speaker independent system. The
user can either use a microphone or a telephone for

speech input. We use the CSR acoustic models for
microphone input, and a separate set of models for
telephone input. The recognizer can switch between pre-
defined language models and can also load dynamically
generated language models. The speech recognizer can
generate N-best hypothesis as well as multiple
hypotheses for a given region. However, only the top-
scoring hypothesis is passed to the application.

The application parses the user query using the Phoenix
parser [8]. This is a flexible frame-based parser, which
tries to maximize the amount of parsed input. It uses a
semantic grammar, which is based on semantic entities
known to the system (for example, date, time). This
approach is oriented towards extracting information that
is relevant to the task.

The current system can be run on one machine or on
many different platforms (for example, the decoder can
be running on an alpha station, while an application is
running on a PC). This modular approach allows the
system to be easily configured in different ways (for
example, using microphone or telephone for speech
input or connecting to a specific application). It also
allows the applications to interact, and thus avoid the
need to prompt the user for shared information that is
already available elsewhere. Of course, this necessitates
a common ontology.

3. TASK INDEPENDENT COMPONENTS

Speech research is data driven: we need lots of data to
train acoustic and language model in a new system. In
addition, we need data to generate Phoenix grammars.
As we experiment with 10,000 spoken language
applications [7], we need to build libraries of common
components. This would avoid duplicating the effort,
ensure that applications have similar performance on
common components, and more importantly ensure that
important information is not missing from the training
data; For example, it is possible that only some months
occur in the training data.

We built word pair language models for common
components (what, when, time, date, day of week). We
also extracted some Phoenix grammars from the ATIS
systems. The user can specify one of these language
models when filling the form.

4. SPEECH ENABLED FORMS

The current system runs under Netscape 3.0+ and can be
accessed over the WWW. We can run several spoken
language applications using this system:

• Any Form on the WWW

• ATIS

• SCS Directory

However, we will only describe interface for filling a
form:

1. The user loads any document by specifying its URL,
and can also follow links.

2. The user clicks the Ready button when he wants to
fill a form. The system uses Netscape Liveconnect
to access the form fields, connects to a user agent
and sends the form information.

3. The system then waits for the user to speak the field
(text, check boxes, radio button, drop down lists)
values, interprets the speech recognizer output and
enters it in the appropriate field. The user can also
type or use the mouse to fill some of the field
values.

4. The system can also fill in (appropriate defaults) or
update other fields based on the last value that was
specified. It can also prompt the user for required
fields that do not have default values. It
automatically scrolls up or down based on the field
that was specified.

5. The user can submit the form, in which case the
system simulates the submit button on the form.

There are several problems that arise in processing
unseen forms on the WWW:

• A document can have several frames. In addition,
there may be several forms in a frame.

• Information about a form field is not easily
accessible; for example, it can be an image.

Speech-enabled forms avoid these problems by encoding
this information in the name field (name =
Prompt__LanguageModel). We display drop-down lists
in the help frame. In addition, information in the form is
not represented in canonical way. For example, the form
may contain 72 mb as one of the options. We need to
translate it to seventy-two megabytes before generating a
language model. If this seems easy, consider the option
STB ViRGE[TM], 4MB, 3D 64-bit Graphics: What’s the
canonical representation? What is the user going to say?
Is it simpler to use a mouse to select this option? Should
the system transform it to a different representation, for
example, yes/no question? We also need to convert the
decoder output from the canonical representation to the
representation used in the form.

5. OTHER SYSTEMS

This system presents a model for designing distributed
spoken language systems that can be used with
commercial browsers. Unlike earlier speech enabled
browsers ([6]), it works with commercial browsers (for
example, Netscape) without any modification.

The current system is similar in many ways to the MIT
[2] system. The main differences are as follows:

• Our system has no built in knowledge of the form.
The user can specify any form on the WWW.

• We have a built in library of language models. The
user can choose one of them for a particular field.
The user need not specify a language model in
which case the system uses a default (general)
language model.

This provides a way of using specific language
models. We can also define speech-enabled forms
that encode this information. We also dynamically
generate language model for some contexts (for
example, drop down lists, radio buttons). We are
trying to generalise this mechanism by using
heuristics to identify appropriate language model for
a form field.

6. FUTURE WORK

The speech interface to web forms avoids some of the
complexities encountered in designing spoken language
systems, for example, it needs very limited context
information ([3])). Earlier systems (ATIS systems,
Galaxy [1] system) mainly used rule based approaches to
model dialog. The form-filling model presents a more
structured approach to the problem.

The current commercial spoken language applications
(for example, AT&T’s operator assistance) and our
experience with the ATIS systems demonstrate the
feasibility of developing spoken language understanding
systems for limited vocabulary tasks. We are trying to
use dialogue state information to identify more specific
language models based on what the user is likely to do.
This also restricts the vocabulary in any dialogue state.

The system described in this paper is an initial model.
We are working on several problems aimed at improving
performance of this system:

• Task-specific language models:

♦ What’s the best language model to use when
you have sparse task specific data?

♦ How to use dialogue state information to select
a language model

• Improve user interface
How do we minimize the information displayed or
at least highlight the important information?

• Tighter Coupling between application and
recognizer
Can application-specific knowledge help to fix
certain recognition errors?
REF: GO FROM CHICAGO TO TOLEDO
HYP: GO FROM CHICAGO TO TO LEAVE AT
Ringger [5] uses a post processor to address this
problem. Can we use alternate hypothesis in the
error region (as determined by parser) or can we
search this region again using a more specific
language model.

These changes will also help in the development of a
spoken language toolkit, which will be used for rapid
prototyping of spoken language understanding systems.

7. ACKNOWLEDGEMENTS

We would like to thank Raj Reddy for his support and
encouragement, Alex Rudnicky for many discussions
and comments, and Ravi Mosur for help with decoder
issues. This research was sponsored by the Department

of the Navy, Naval Research Laboratory under Grant
No. 00014-93-1-2005. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official
policies, either expressed or implied, of the U.S.
Government.

8. REFERENCES

 [1] David Goddeau, et. al., “GALAXY: A Human
Language Interface to On-line Travel Information”,
Proceedings of ICSLP 94, pp 707-710, Yokahama,
September 94
[2] David Goddeau, et. al., “A form-based dialogue
manager for spoken language applications”,
Proceedings of ICSLP 96, Philadelphia, October 96
[3] Sunil Issar and Wayne Ward, “CMU’s Robust
Spoken Language Understanding System”, Proceedings
of Eurospeech 93, September 93
[4] Mosur K. Ravishankar, “Efficient algorithms
for speech recognition”, PhD., Carnegie Mellon
University, Pittsburgh PA, May 1996
[5] Eric K. Ringger and James F. Allen. "Error
Correction via a Post-Processor for Continuous Speech
Recognition." In Proceedings of the 1996 IEEE
International Conference on Acoustics, Speech, and
Signal Processing (ICASSP'96). Atlanta, GA. May 1996
[6] Alex Rudnicky, et. al., “Speechwear: A mobile
speech system”, Proceedings of ICSLP 96, Philadelphia,
October 96
[7] Stephen Sutton, David Novick, Ronald Cole, et.
al., “Building 10,000 Spoken Dialogue Systems”,
Proceedings of ICSLP 96, Philadelphia, October 96
[8] Wayne Ward, “Understanding Spontaneous
Speech: The Phoenix System”, Proceedings of ICASSP
91, pp 365-367, May 1991

