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ABSTRACT

In this paper, we give a �rst account of speech tempo and
its change in spontaneous speech in a very large data base
(Verbmobil, i.e., human-human appointment dialogs). As
features representing speech tempo, we computed mean
normalized speech duration (speaking rate) and normal-
ized phone duration in di�erent ways. The importance
of these features is evaluated with an automatic classi�-
cation of boundaries and accents where di�erent sets of
prosodic features (including also information about F0,
energy, pause, etc.) were used. The best results (83% for
accents, 88% for boundaries, two classes each) could be
achieved when all features were used. For the 2nd issue
change of tempo was labelled manually. We present the
characterizing feature values for changes from slow to fast
and from fast to slow, as well as the results of an au-
tomatic classi�cation of change of tempo (72% for three
classes). Finally, we discuss the possible function of change
of tempo and its use in automatic speech processing.

1. INTRODUCTION

Speech tempo characterizes �rst of all an individual
speaker who, however, can vary it either in order to signal
di�erent emotional states or in order to use it for di�erent
rhetoric functions, as, e.g., planning, holding the 
oor, etc.
This means for listeners, that they have to calibrate their
perception for the speci�c speech tempo of a speaker, in
particular if this tempo is extraordinary fast. Above that,
they can notice the overall change of tempo (e.g., as an
indication of emotion [12]) or the local change of tempo
(e.g., as an indication of the structuring of the dialog [10,
pp. 390]). In analogy, taking into account tempo and its
change in automatic speech processing can be useful for
word recognition, for the classi�cation of suprasegmental
events (prosodic marking of accents and boundaries), and
for semantic and dialog analysis. Tempo can be used as a
basis for the normalization of phone duration.
Up to now, almost all phonetic studies on speech tempo
were based on controlled, elicited speech [11]. This holds
for psycholinguistic studies on planning strategies as well;
studies on emotion were sometimes based on `real life'
speech; however, they did not use strict measurement pro-
cedures.

2. COMPUTATION OF SPEECH TEMPO

In [5] it is shown that mean and standard deviation of
phone duration depend both roughly linearly on speech
tempo; this means that we can model duration with
gamma distributions [4]. Faster speech tempo thus co{
varies with a reduction of mean phone and syllable du-
ration and their standard deviation. [13] introduced the
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of this study lies with the authors. We would like to thank
Elisabeth Maier, DFKI, Saarbr�ucken, for analyzing the dialog
acts adjacent to tempo change.

mean normalized speech duration � , that can be computed
for a longer stretch of speech, e.g., for a phrase or for
the whole turn; cf. Eqn. (1). With this mean normalized
speech duration, we can compute the mean normalized
phone duration durationnorm of phones, syllable nuclei,
words, etc., cf. Eqn. (2).
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In these equations the following parameters are used:

phone(i) the phone type of the i-th phone segment
k number of phones in the stretch of speech,

without pauses
d(i) duration of i-th phone segment with phone

type phone(i)
�phone(i) mean duration of phone(i)
�phone(i) standard deviation of the duration of

phone(i)
l number of phones in the syllable (for syl-

lable nuclei: one phone)

The phone intrinsic values �phone(i) und �phone(i) were
estimated beforehand with the help of a training data
base. Three di�erent contexts of a phone were taken into
account for the estimation of � and � while in any case
Eqn. (2) is used for the computation of the duration.

� For durationnorm, we use all tokens of phone(i) in
the whole sample for the estimation of �phone(i) und
�phone(i).

� For duration
word acc
norm , we estimate different

�phone(i), �phone(i) depending on whether the syllable
with the pertinent phone is the carrier of the lexical
word accent or not. For each phone class, we thus
estimate two (�,�){pairs out of the training sample.

� For duration
syll pos
norm , we again estimate di�erent

�phone(i), �phone(i); this depends on the fact whether
the phone is in a monosyllabic word or in the word
initial, word �nal or word internal syllable of a poly-
syllabic word. As it is additionally distinguished if the
syllable carries the lexical word accent or not, this re-
sults in the estimation of in total eight (�,�){pairs for
each phone class.

All these normalizations are explicit normalizations for
the duration of phones, syllables, words, etc. In analogy,
by taking into account the same three di�erent contexts,
we can compute the mean normalized speech duration of
the turn in three di�erent ways by using the correspond-
ing �phone(i) in equation 1. These values are estimates for
the speaking rate of the phrase/turn etc. and can be di-
rectly used in the feature vector for the sake of an implicit
normalization of the other prosodic features in the vector.



feature sets number set alone all n set
(set) of A j :A B3 jB[029] A j :A B3 jB[029]

features ER ER
K

ER ER
K

ER ER
K

ER ER
K

all 276/0 82.6 (82.2) 88.3 (86.8) | |
durationall 60/216 74.9 (74.7) 78.7 (77.7) 81.7 (81.4) 83.9 (85.1)
global duration 3/273 50.4 (51.3) 48.6 (54.9) 82.0 (81.5) 87.7 (86.2)

set alone all ndurationall [ set
durationnon norm 15/231 67.0 (67.0) 74.4 (75.0) 82.2 (81.8) 85.6 (84.8)
durationnorm 15/231 69.5 (69.2) 72.3 (74.1) 81.8 (81.4) 87.2 (85.1)
duration

word acc
norm 15/231 66.7 (66.2) 72.9 (73.6) 82.4 (82.0) 86.4 (85.2)

duration
syll pos
norm 15/231 68.5 (67.7) 71.9 (73.3) 82.0 (81.6) 85.4 (84.6)

Table 1. Recognition rates for the classi�cation of accents (A j :A) and prosodic boundaries (B3 jB[029]) with di�erent feature
sets. Best results with all features are depicted with bold face.

3. CLASSIFICATION OF ACCENTS AND
BOUNDARIES

Speech tempo in
uences in particular the duration of
phones and words and thus the prosodic realization of ac-
cents (lengthening of prominent syllables) and of bound-
aries (phrase �nal lengthening). We were therefore inter-
ested in the question whether an explicit or implicit nor-
malization of speech tempo improves the automatic classi-
�cation of accents and boundaries. To our knowledge, this
is the �rst study that uses tempo parameters for the au-
tomatic classi�cation of accents and boundaries in spon-
taneous speech; as for read material, cf. [13].
We used a subsample of the Verbmobil (VM) data base for
which perceptual prosodic labels (� accent, �boundary)
are available: 30 dialogs for training and 3 dialogs for test-
ing (in total, 861 turns, 2 hours of speech) [8]. Based on
an automatic time alignment of the spoken word chain,
a huge feature vector (276 prosodic features) was com-
puted for each syllable and each word that encodes the
prosodic properties (F0, duration, energy, pause, etc.) of
the actual word and its context (the maximum context
was � two syllables or words). Multi{layer perceptrons
(MLPs) with di�erent topologies were trained and tested
for the classi�cation of accents and boundaries. Experi-
ments were performed with di�erent feature sets. In any
case the MLPs had as many input nodes as the dimension
of the speci�c feature vector and one output node for each
of the classes to be recognized. The a priori probability is
not modelled in the MLP. More detailed presentations of
feature set and classi�cation can be found in [7, 8, 9].
Based on the best recognition rates obtained up to now
for accents and prosodic boundaries [7, 8], we studied the
in
uence of di�erent normalizations (explicit normaliza-
tion) and the use of the mean normalized speech dura-
tion � as a feature (implicit normalization). The results
of these experiments are given in Table 1 for the classi-
�cation of prosodic boundaries (strong boundary B3 vs.
[weak boundary B2, no boundary B0, irregular boundary
B9]) and for the classi�cation of accents (accented A vs.
not accented :A). For each feature set, the best result
achieved is displayed in Table 1. In column `set alone',
the results for the speci�c feature set are given, in column
`all n set', the complements are given, i.e. recognition
rates for all features without those speci�ed in column one.
For the results in column `all nDURATIONall [ set',
we only used the 216 `non{durational features' together
with those 15 durational features speci�ed in column one.
Mean recognition rate ER and, in parentheses, the mean
of the class{dependent computed recognition rate ER

K

are given.
In the experiments, we used three mean normalized speech
durations (row `global duration') that were computed
for the whole turn, cf. section 2: � , � taking into account
position of accent, and � taking into account the position
of the syllable within the word. Of course, it does not make
much sense to use these features for the classi�cation of
accents or boundaries without taking into account other
prosodic features (row `global duration', column `set
alone'). These �gures are only given for completeness. If

we compare row `all' with `all nglobal duration' we
can see that the implicit normalization of the features with
the help of the global durations leads to an improvement
of the recognition rates for both accents and boundaries.
At �rst sight this is surprising because the durational fea-
tures have been normalized already. The reason might be
that global duration is important not only for durational
but also for F0 and energy features because all of them
co{vary with speech tempo up to a certain extent as well.
For the classi�cation of accents (A j :A), the normalized
durational features (durationnorm) for `set alone' are
better than the other durational features; in combination
with the other 216 `non{durational features', however, the
normalization that takes into account position of word
accent (durationword acc

norm ) yields the best result. We can
achieve the best result if we use all 60 durational features
(row `durationall', column `set alone').
If we only use durational features for the classi�cation
of boundaries (B3 jB[029]), slightly better results could
be achieved for the non{normalized durational features
(row `durationnon norm', column `set alone'); in com-
bination with the other 216 `non{durational features',
durationnorm yields slightly better results. If we use all
60 durational features (row `durationall', column `set
alone') instead of only one type of normalization, the re-
sults are always better. For example, compared with the
15 non normalized features (row `durationnon norm'),
the error rate could be reduced by about 17% by using
all 60 durational features (row `durationall').
Summing up it can be established that an implicit normal-
ization of the acoustic{prosodic features with the speech
duration yields better classi�cation results both for ac-
cents and for boundaries: ca. 1% for the classi�cation of
accents and ca. 4% for the classi�cation of boundaries.
It is of minor importance which special normalization is
used. In any case, using both normalized and non normal-
ized durational features yields much better results than
using just one special normalization.

4. CHANGE OF TEMPO

4.1. Annotation

For the investigation of change of tempo, we used almost
all turns of the �rst �ve CD-ROMs of the VM data base
for which syntactic{prosodic labels [3] are available. One
phonetic expert listened to the turns; a clear change of
tempo lasting for more than two words was labelled with
TCA (Tempo Change Allegro, i.e., change from slower to
faster) or with TCL (Tempo Change Lento, i.e., change
from faster to slower). The labels are associated to the
word boundaries. In the following, TC is used as cover
term for all tempo changes (TCA and TCL), and T0 is
used for the complement, i.e., for any other word bound-
ary without a TC. Note that we only took into account
TC on the `macro' level, not on the `micro' level, as, e.g.,
�nal lengthening or hesitation. The latter phenomena are
already labelled in the VM basic transliteration and rep-
resent a sort of arhythmic `stumbling', not a real change
of tempo. In order to reduce the e�ort needed for the an-
notation, the endpoint of a TC is not labelled; normally,



features context TCA (#=128) context TCL (#=69)
before at TCA after before at TCL after

duration, norm. 0.30 0.76 -0.74 -0.59 0.34 0.68
duration, abs. 0.24 0.55 -0.52 -0.36 0.13 0.35
energy, mean -0.07 -0.10 0.37 0.13 -0.16 0.04
energy, reg.coe�. -0.05 -0.02 0.73 -0.13 -0.19 0.39
F0, mean -0.15 -0.10 0.30 -0.16 -0.13 0.05
F0, reg.coe�. -0.06 0.11 0.27 -0.11 0.03 0.00

Table 2. Mean values of relevant features before/at/after TCA/TCL

#tokens TCA TCL T0

TCA 72 78 7 15
TCL 39 10 75 15
T0 2332 19 16 65

Table 3. Recognition rates for TC in percent

it is at the next strong syntactic boundary, but in some
cases, it cannot be localized precisely. The data base com-
prises 362 speakers, 7286 turns with 149.643 words, and
322 TCs (208 TCA and 114 TCL). 80 speakers (22%) used
at least one TC; in 201 turns (2.8%) occurred at least one
TC. A TC is thus rather a speaker speci�c phenomenon
because 78% of the speakers did not use it.

4.2. Feature Values

From now on, we only inspect those 201 turns with at
least one TC. In Table 2, the mean values of duration,
energy, F0, and the mean values of the regression coe�-
cients of energy and F0 are given for the training set (cf.
section 4.3) computed for the largest context of six syl-
lables/three words which yields the best recognition rate,
cf. Table 4. First, we display the mean value for the three
words before the word with a TC, then the value for the
word at the TC, and then the value for the three words
after the TC. The respective values for T0 (n=3816) clus-
ter around zero and are therefore not given in the table.
The values can be interpreted as follows: For a TCA, the
tempo slows down towards the TC, esp. for the word im-
mediately at the TC; then, the tempo gets faster. For
a TCL, it is the other way round: The last three words
are markedly faster than the mean; then the tempo slows
down. Both energy and F0 behave similarly for the left
context of TCA and TCL: before the TC, the values are
equal or slightly lower than for T0; after a TCA, they are
higher, and after a TCL, they are lower than for T0. The
same holds for the regression coe�cients. This correla-
tion of the feature values with each other might partly be
automatic (i.e., a co{variation of redundant with distinc-
tive features) and partly controlled by the speaker. We
can say that the speakers in a way `swing back', i.e., they
behave antagonistically before the TC. They slow down
before a TCA and speed up before a TCL. This does not
mean, of course, that this is always the case; for the mo-
ment, it only means that the criterion for the annotation
of a TC `clear change of tempo' is met especially by these
TCs with an antagonistic leading phase. If such a behav-
ior, however, characterizes a TC in general, it will surely
facilitate automatic processing of these phenomena.

4.3. Automatic Classi�cation

For the automatic classi�cation of TCs, we used the same
feature set and classi�ers as described above. Table 3
shows the result of an automatic classi�cation with 421
features. This feature set yields the best classi�cation (cf.
Table 4). Note again, that for training and test only those
turns were used that contained at least one TC. The TCs
of CD{ROM2 formed the training set (123 turns), all
other turns the test set (71 turns). Note that our classes
are ordered: T0 should be between TCA and TCL and
is thus prone to be more confused with them than TCA
with TCL and vice versa. For the best classi�cation of
72%, such a `bad' confusion of TCA with TCL only oc-
curred in 9 cases (i.e. 0.4% of all word boundaries).
Table 4 shows the class-dependent mean recognition
rates with di�erent feature sets. The context considered
(# syllables, #words) and thus the number of compo-
nents in the feature vector increases from left to right.
The recognition rate for the three classes T0, TCA, TCL
was 57% to 72%, depending on the context for which the
features were computed: the larger the context, the better
the recognition. (Due to limited resources no larger con-
text than six syllables/three words was considered here;

further improvement is expected when using more con-
text.) This result mirrors in a way the strategy of the
labeller only to annotate TCs on the macro level.

4.4. Tempo Change at Syntactic Boundaries

For this data base, there exist syntactic{prosodic la-
bels that denote boundaries with di�erent strength;
`syntactic{prosodic' means, that the criteria are mainly
syntactic but that prosody is taken into account up to a
certain content; as for details, cf. [3]. TCs are triggered by
planning processes, not by the di�erent strength of syn-
tactic boundaries. A similar phenomenon is �lled pauses:
in [1], we report that 9/10th of �lled pauses can be found
at syntactic boundaries. A systematic evaluation of our
data shows that TCs behave in a similar way: they can
mostly be found at di�erent types of strong syntactic
boundaries and do not tell apart di�erent types of syn-
tactic boundaries. They occur mostly at boundaries that
mark sentences, parentheses, and discourse particles (as
`well', `ok' with following pauses) that are prototypical
candidates for positions where some planning goes on. It
turns out that TCs are seventeen times more frequent at
syntactic boundaries than at `normal' word boundaries.
A more detailed account can be found in [2].

4.5. The Function of Tempo Changes

In some cases, a TC is the only means to disambiguate be-
tween two syntactic readings. The `classic' case is certainly
parentheses which, however, are rather seldom in our ma-
terial. TCs obviously co-occur very often with syntactic
boundaries, but this is most certainly not the primary
function intended by the speaker. The primary function
could either be dialog{speci�c, i.e., control of turn tak-
ing, or semantic, i.e., indication of salient information,
or rhetoric, e.g., variation of the speech tempo (in order
to hold the attention of the speaker). It can as well be
that there is no real function at all but that it is just
as speaker{speci�c as, e.g., nasalisation, slurring, or the
continuous use of allegro or lento speech can be. A null
hypothesis might be that TCs are mainly be caused by
planning processes in the same way as �lled pauses, re-
pairs, fresh starts a.s.o. are.
In Table 5, we cross{classify TCAs and TCLs with re-
spect to two conditions: First, whether they occur `solo'
in a turn [{mixed], without any other TC, or together (al-
ternating) with at least one other TC [+mixed]. Second,
whether they can be found in a [+�nal] position. Such
a position is either close to the end of the turn (EOT),
i.e., at the last syntactic boundary before the EOT, or it
could be close to the EOT because essential information is
already given. TCs at a [{�nal] position are either inside
a constituent (syntactic criterion), or an EOT close to
them would make no sense because essential information
is still missing (dialog speci�c criterion). [+�nal] TCs are
thus followed by an addendum that is not strictly neces-
sary in order to produce a felicitous turn { a turn that
the dialog partner is content with and can respond to.
In about ten instances, this addendum is after a TCA
and before the EOT and ful�lls rather a phatic function,
as \...so let's meet on Saturday TCA will that suit you
EOT" because in a co{operative and symmetric commu-
nication, such a suggestion must always be con�rmed by
the partner. Such instances might be the reason why for
TCAs in the [{mixed] condition, there are almost twice as
many in the [+�nal] condition compared with the [{�nal]
condition. The TCLs in the [{mixed] condition, however,



#syllables 0 1 2 1 2 3 3 4 5 5 6
#words 0 0 0 1 1 1 2 2 2 3 3
# features 45 83 121 127 165 203 251 289 327 383 421
rec.rate (%) 57 61 66 62 67 69 69 66 68 70 72

Table 4. Class-dependent mean recognition rate in percent

TCA TCL
-mixed +mixed {mixed +mixed

+�nal 63 51 8 51
{�nal 36 58 7 48

Table 5. Frequency of TCs in [�mixed]/[��nal] condition

are equally distributed across [��nal] but only a few com-
pared with TCAs in the same conditions and with TCLs
in the [+mixed] condition. This might be caused by the
fact that the overall setting of the scenario generally favors
a `planning' behavior and thereby a general slow speak-
ing style (compared with the individual speaking rate of
the speaker, of course). TCAs might therefore be more
pronounced than TCLs | and thus more prone to be
perceived as such and annotated at all. In the [+mixed]
condition, the variation between TCA and TCL might be
a rhetoric means that gives rise to the one and the other
(`what goes up must come down'). We can see, that the
[+mixed] cells are almost equally distributed for TCA and
TCL, and for [+�nal] and [{�nal].

4.6. Tempo Change and Dialog Acts

In VM, the dialogs are annotated with dialog acts (DAs)
that denote illocutionary force and can be subcategorised
as for their functional role or their propositional content;
for details, cf. [6]. We compared the distribution of those
DAs that followed a TCA in the [{mixed] condition with
the overall distribution of the DAs in a reference sam-
ple, namely CD{ROM7 (6621 DAs).2 In Table 6, the re-
spective frequencies of occurrence in percent are given for
some important DAs whose frequencies di�er consider-
ably. (Note that the columns do not sum up to 100% be-
cause infrequent DAs are not given in the table.) TCAs do

not occur at all at DAs that establish the social setting.3

In the crucial decision phase, not many TCAs can be ob-
served. In contrast, they are frequent in the negotiation
phase, when DAs elicit information but do not give salient
new information.

4.7. General Discussion

Our results with respect to the function of TCs are con-
sistent with the 'classic' interpretation that TCLs mainly
indicate planning processes. TCAs are, so to speak, the re-
sults of planning processes. Their primary function might
really simply be to hold the 
oor. Their secondary func-
tion might be a rhetoric one, namely the variation of
speech tempo that mainly takes place in the negotiation
phase of a dialog. At least in our data base, TCs do not
occur very often. If this holds across other data bases as
well, it might not be worth while to model them for auto-
matic recognition and understanding. They can, however,
be used in generation and synthesis in order to produce
more natural speech. For such an application, our results
can give clues for an adequate use of TCs.

5. CONCLUSION

We have shown that speech tempo should be modelled in
automatic speech understanding systems because by that,
we could improve the automatic classi�cation of bound-
aries and accents to a considerable extent. If the feature
vectors are continuously calibrated w.r.t. the individual
speakers, we cannot only take into account the individual

2TCLs in the [{mixed] condition are only a few, and in the
[+mixed] condition, the rhetoric function established in the last
section could obscure the distribution of the DAs. We therefore
con�ne our analysis to TCAs in the [{mixed] condition.

3Note that greet is normally at the very beginning of a turn;
this fact prevents of course a leading TCA because to its left,
there is no word sequence whose speech tempo could be com-
pared with the sequence to its right.

dialog phase dialog acts TCA ref.

establishment greet 0 4
of social introduce name 0 4
settings bye 0 4

thank 0 1
negotiation suggest date 34 23

phase request comment date 22 3
request suggest date 8 2
clarify query 14 1

decision accept 4 10
phase reject 1 4

Table 6. Frequency of dialog acts in percent

speech tempo of each speaker but overall change of speech
tempo within one speaker as well.
Local change of speech tempo is an interesting topic by
its own. At least for the data base used, there are, how-
ever, only a few tokens, so it might not be worth while
to model it explicitely in the recognition/understanding
phase but only in the generation/synthesis phase. Mat-
ters might change with other domains or with other lan-
guages. The reason for this distribution could of course be
the strategy of our labeller only to label very pronounced
TCs. Without the investigation of other data bases we
can, however, not decide whether it is not simply the case
that TCs are just one { out of many { means to ful�ll
some rhetoric functions.
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