CRITICALLY SAMPLED PR FILTERBANKS OF NONUNIFORM RESOLUTION
BASED ON BLOCK RECURSIVE FAMLET TRANSFORM

Unto K. Laine
Laboratory of Acoustics and Audio Signal Processing
Helsinki University of Technology
P.O. Box 3000, FIN-02015 Espoo, Finland
Tel. +358 9 4512492, FAX: +358 9 460224, E-mail: Unto.Laine@hut.fi

ABSTRACT

A new block recursive algorithm is introduced for
effective FAMlet transform implementation. When the
Fourier transform is combined with the algorithm a
nonuniform resolution filterbank 1is created. The
algorithm allows to approximate frequency resolutions of
any type, the ERB-rate scale included. The signals can
be vector based critically down sampled which allows a
perfect reconstruction.

1. INTRODUCTION

In our earlier study [1] a nonuniform resolution filterbank
approximating the auditory Bark-scale was created based
on the combined FAMlet and Fourier transforms. The
FAMlet transform produces frequency warped signal, i.e.,
a new representation of the original signal in which the
frequency components are shifted according to a frequency
warping function v(f). Finally, the FAMlet transformed,
frequency warped signal is Fourier transformed to
produce a spectrum of the original signal on a new
frequency scale: v-scale. If the warping function
corresponds to the Hz-to-Bark mapping the produced
spectrum is auditory, Bark-scale spectrum. When both
transforms are carried out sample by sample, the
filterbank produces N outputs for each sample. Because
the filterbank is of nonuniform type, there is no simple
means to do the critical down sampling.

Up to now the only effective implementation method for
the FAMIet transform has been the use of the chain of
first order allpass filters, i.e., the Laguerre network.
Because the phase characteristic of the allpass sections is
controlled with one free parameter only, the network can
produce only one type of frequency warpings and
filterbank resolutions. = When, e.g., a logarithmic
resolution is needed, there has not been any
computationally efficient tool to implement the FAMIet
transform. The only way has been the use of relatively
long FIR filters for the FAMlet transformation.

One method to increase the design freedom is to use
higher order allpass sections or Kautz-type structures [2].
The use of higher order allpass sections increases the
complexity of the system and also the treatment of the
folding problems is quite expensive. Second and third
order allpass sections seem to increase the computational

complexity faster than the design freedom needed to
implement complicated frequency warpings.

Dispersive delays realised by allpass filters are the most
essential part in the generation of FAMlets. In order to
avoid the folding, these allpass filters should have
average group delay of one unit sample even if the phase
has a more complicated structure than that of the first
order allpass filter. The following new algorithm is
based on the idea of "generalized" chain of allpass filters
described by state space equations. The state vector of
N-elements represents directly the instantaneous values of
the N FAMlets.

The state space representation of the FAMlets leads to an
interesting observation that if the FAMlet basis (of N
functions) is splitted, e.g., in nonoverlapping NxN
blocks, every block after the first one can approximately
(or in the discrete Laguerre case even exactly!) be
produced by multiplying the previous block by a state
transition matrix A. Thus, the functions are entirely
produced from the first block by multiplying repeatedly
with A. This block recursion can be directly applied to
effective production of FAMlet functions and transforms
of almost any type.

The fact that the FAMlets are block recursively
redundant is not very surprising when we remember that
they are essentially produced by allpass operations which
include recursion. Due to the recursive warping the
functions are not orthogonal in the first NxN block like
the functions in the Fourier base, but need infinitely
many recursive NxN blocks to be represented precisely.
Moreover, in the case of nonwarped discrete Fourier base
the next blocks are identical to the first one (if the basis
is extended over the first block). Thus the state transition
matrix is simply an identity matrix. The warping means
that the state transition matrix is no more an identity.
The next question is how this matrix can be optimised
to produce the best possible estimate for the FAMlets
and the warpings in question.

In this paper we introduce a new fast algorithm which
solves the two problems mentioned above: firstly, the
critical sampling can be treated by block based algorithm
which operates on vectorized data and secondly, any
kind of warping can be approximated by a proper state
transition matrix A. Further, we define critical
vectorization, which means that the input data N-vector
is transformed into spectral data N-vector. Since the



linear operators involved are of full rank, the resulting
filterbank has a perfect reconstruction (PR) feature.

2. FAM AND FAMLET CLASSES AND
FREQUENCY WARPING

The FAM class of orthogonal functions ¢,(f,a) is
defined by (1), where @ € Z is associated to the order of
the function. FAM stands for Frequency-Amplitude
Modulated complex exponentials [3].

0,(f.@) =V df €17 .

The FAM class consists of sets of orthonormal functions
the properties of which are primarily controlled by the
function Vv(f), which defines the frequency warping
produced by the corresponding FAM or FAMlet
transform. The class of FAMlets is defined by:
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In (2) time domain FAMlets are produced by applying
the inverse Fourier transform to the frequency domain
FAM functions. They also form a class of orthogonal
functions [4]. Now, the FAM transform is given by:
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The range of orthogonality is [f7, fo]. Correspondingly
we can define the FAMlet transform.

su(@)=¥,s0)= [ s(t) v,(~t.a) dr
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According to (3) and (4) the FAMlet transform of the
signal s(#) is equal to the FAM transform of its spectrum
S(H. The new signal sy(a) represented in the a-domain
(transform domain) is the frequency warped version of
the original signal s(f). When the continuous variables ¢
and f are discretized to » and %, the integral transforms
are changed to matrix operators.
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The FAMlets are in principle infinitely long in time
(IIR-type), however 99% of their energy is typically
given in a limited time window. The corresponding
transform matrix W, is then not rectangular.
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3. NONUNIFORM RESOLUTION FIR TYPE
FILTERBANK

The nonuniform resolution spectrum (spectrum on the
new, warped v-scale) is produced by applying the
Fourier transform for the frequency warped signal s(a).
This procedure is formally given by (6), where F denotes
the Fourier transform.

S(v)=F s5,(a)=F ®,S(k)
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According to (6) the nonuniform resolution spectrum
S(v) of the signal s(n) can be also produced by
combining the Fourier and the FAMlet transform. If v(f)
follows the Hz-to-Bark mapping this combined transform
defines the impulse responses of the corresponding FIR
type orthogonal auditory filterbank Fy having Bark-
resolution [1]. The FIR coefficients of the channels form
the rows of the Fy matrix (7).
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4. BLOCK RECURSIVE FAMLET
TRANSFORM

Let ,,(n,a) denote a member of a set of N orthonormal
FAMlets designed for frequency warping v(f). Now n
denotes the time index and a the order of the function.
The block recursive algorithm needs a method to
estimate new values for the FAMlets from their present
values. In most cases exact new values can not be
analytically solved. Our method is based on a predictor
matrix P that gives estimates for the FAMlet functions
based on their earlier values.

v, (n+d)=Pwy, (n) ndeZ ®

In (8) w,(n) denotes a N-vector taken from the FAMlet
basis in the time instant » and d is a positive integer
denoting the time span over which the values are
predicted. It is easy to see that this “vector predictor”
can be solved by solving N “scalar predictors” of the
conventional form

N
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where the value of the i-th FAMlet at the time instant
n+d is estimated from the values of all N FAMlets at the
time instant n. The predictor coefficients pjj can be

solved in the conventional way based on the
autocorrelation function.

P = R'r (10)

where matrix R is the autocorrelation matrix and vector r
the corresponding correlation vector. The correlation is
now computed between FAMlets of different order and
the matrix R is in fact a cross correlation matrix.
Moreover, because the FAMlIets are orthonormal this
matrix is an identity matrix (R = I). So the predictor
cocfficients are easily produced by correlating different
FAMlets where one of them is shifted in time d units.

In the orthonormal case the predictor matrix P is simply
a matrix containing correlation coefficients

P={r,(v.y,)} i.jeZ (11)

where rqis correlation between FAMlet of order i shifted
in time d units and FAMlet of order j. Let d = N and
the matrix Wy o consist of the first N samples of the ¥



FAMlets (a N x N matrix). The next N samples of the
FAMlets can now be predicted by

b Y =P, ¥, . meZ’ (12)
where m denotes the block number. Finally, the block
recursive FAMlet transform is defined by:

meZ" (13)

v,m+1
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where s;, denotes the m-th N-vector formed from the
incoming discrete-time signal s(n), and Xp,,1 is the
frequency warped form of sy,

The block recursive FAMlet transfom (13) is easy to
interpret. At the beginning the state vector is zeroed.
The first transform is made with the base block Wy ¢ .
Because the next FAMlet block is recursively generated
from the first one, so is the transform vector. The
history of the transform is collected recursively, whereas
the new information is added trough the base matrix
analysis.

The transform (13) has also a state space interpretation.
The warping is done applying a generalized version of an
allpass chain. Matrix P corresponds the state transition
matrix (A) and the matrix Wy o the state control matrix
(B). From this point of view it is easy to understand
that the absolute values of the eigenvalues of P must be
less than one in order to quarantee the stability.

Note also that this recursion can be used to generate the
FAMlet basis. When sg is replaced by an identity
matrix and the following inputs with zero filled matrices
the state vector is changed to matrix ¥y ; , where the
index i runs from zero upwards. When all the generated
blocks are joined the FAMlet basis is created.

Almost any type of frequency warping can be realised by
the block recursive FAMIet transform. The accuracy of
the warping depends on the shape of the v(f) function and
on the ability of the predictor to estimate the values of
the actual FAMlets.

5. NONUNIFORM RESOLUTION, BLOCK
RECURSIVE, CRITICALLY SAMPLED, PR
FILTERBANK

According to (6) the v-resolution spectrum S(v) of the
incoming signal s(n) can be produced by Fourier
transforming the frequency warped signal s(a).

S . (W=Fx_,=FP,x_+F%, s_ (19

We may develop (14) further and get the final form for
the corresponding block recursive filterbank.

S (VW=FP,F'S (W+F¥,s_
S,.VM=TS§ (V+Us,_,
where T=FP F" and U=FY¥,.

In the case the matrix U has an inverse the original
signal s(n) can be fully reconstructed from its V-
resolution spectrum S(v).

(15ab)

s,, = U'[S,,, (V) =TS, (V)] (16)
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6. SIMULATIONS

A simple 17-channel block recursive filterbank was
simulated with Mathematica™ 3.0. The signal
bandwidth was 22.05 kHz. A Gaussian window was
used between the FAMlet and Fourier transforms in order
to attenuate the sidelobes. The bank produces
approximately 1.5 Bark resolution.  Fifteen of the
channel outputs are complex valued. The bank gives
magnitude estimates after each input vector of 32
samples. The synthetic test signals was chosen the
coming speech analysis in mind.

The first test signal (1024 samples) consists of five
positive half waves of sinusoids which are not
synchronized with the sampling rate so that each pulse
differs slightly from the others (Fig. 1 upper part). The
lower part of the Fig. 1 shows the Bark-scaled time-
frequency distribution of the pulses. The high frequency
channels react first and are able to detect the rapid
changes at the beginning and at the end of each pulse.
Because these points differ in each pulse the spectral
pictures of them differs too. There is increasing group
delay towards the low frequency end. However, in the
middle of the pulse there is a pure sinusoidal part which
is detected eventhough its duration is only half cycle.
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Fig. 1. Upper frame: sinusoidal test pulses.

Lower frame: auditory spectrogram (x: vector
number, y: channel number)

In the next test a middle frequency sinusoidal signal is
amplitude modulated with an low frequency rectangular
wave. Also here the bursts are not equal. The
spectrogram of Fig. 2 shows small variation too. The
amplitude modulation is also here clearly detected. The
reaction time of the bank depends naturally on the
frequency of the carrier.
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Fig. 2. Test with sinusoidal bursts.

The third test is made with frequency modulated
sinusoid. The modulating signal changes up and down
approximately logarithmically (modulation frequency
170 Hz) and the change in the auditory spectrogram is
nearly linear (triangular). An interesting detail here is
that the up going part gives little larger magnitude
values than the down going part. A related
phenomenon is found in psychoacoustical listening tests
[51, [6].
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Fig. 3. Auditory spectrogram of frequency modulated
sinusoid.

The fourth example is analysis of open Finnish /ae/
vowel produced by a male speaker (MK). The signal
consists of five glottal periods and the signal bandwidth
in this test is 11.025 kHz. The first formant of the
vowel is around 750 Hz, close to the channel number
seven (about in the middle). The first formant has clear
pitch synchronous amplitude modulation. The
amplitude is attenuated strongly during the open glottal
period. Also a small frequency modulation can be
detected. The second formant fluctuates from period to
period and so do the third one which is very close to the
second formant. The most interesting founding in this
picture is the clear pitch synchronous resonance around
450 Hz (channel four). It appears just before the glottal

closure. It must be a tracheal resonance which is seen in

the spectrogram only during the open glottal periods.
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Fig. 4. Auditory spectrogram of Finnish /ae/..
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