A Flexible Client-Server Model for Multilingual CTS/TTS Development

Tibor Ferenczi*, Géza Németh*, Gabor Olaszy**, Zoltan Gaspar*

*Department of Telecommunications and Telematics,
Technical University of Budapest, Hungary
E-mail: ferenczi@ss20.ttt.bme.hu
nemeth(@ttt.bme.hu
gaspar@ss20.ttt.bme.hu
**Phonetics Laboratory, Linguistics Institute of the Hungarian Academy of Sciences, Budapest, Hungary
E-mail: olaszy@ttt-202.ttt.bme. hu

ABSTRACT

The efficiency of the development of CTS/TTS systems is
influenced by the features and services of the sofiware
development tools used in the development process. A
development ~system should be highly flexible,
informative and user friendly to fulfil all or almost all
the requirements the researcher could have. In this
paper we present a development system, MVoxDev, that
can provide an informative and flexible environment for
the development of multilingual CTS/TTS systems. The
development system gives aid to inspect and modify all
the constituent parts of the CTS/TTS system as a client
of the developed CTS/TTS system.

1 INTRODUCTION

In this paper a highly flexible tool for multilingual
CTS/TTS development is presented. The aims that were
addressed at the creation of the development system
were to provide multilevel tools for researchers,
technology for multilingual development and a
convenient way to the application programmers to
interface with the speech synthesizer. As the arca of
application is getting broader and broader and the
application developer can be an expert on the field of
application (e.g. reading advertisements, weather
forecasts, applications in industry, stock exchange,
telephony, handicapped people etc.) and thus he or she
can tailor the acoustic database, the linguistic rules and
exceptions to his or her needs.

The requirement to have a multilevel development
system comes from the need, that the different
representations (tagged text, analysed text, sound codes,
physical representations of speech data, etc.) of text to
be uttered should be presented to the researcher at the
same time, synchronized to each other and also there
has to be the opportunity to manipulate these objects.

Finally we wanted to separate the run-time application
environment from the development functions. Figure 1
gives an overview about the system wusing the
client/server model:

|’Edito Viewer

GuUl
Editor/Viewer

MVoxDev Session Manager

{EdilorNiewer

DDEcommunication

l

DDEcommunication

MuitiVox Session Manager

audio server CcTsSTS communication

subsy Y Y r

<>
connection
to other

Figure 1 - Block diagram of the MultiVox CTS/TTS
multilingual development system. The development
system acts as a client of the run-time CTS/TTS system
to be developed.

2 FUNCTIONS FOR CTS/TTS
DEVELOPMENT

We introduce below the functions of the multilevel
CTS/TTS tools for linguistic design and that of the tools
for database development.

Development systems such as Speech Maker [1] are
mainly for the development of the text-analysis part of
the TTS system. Although COMPOST [2] and Festival
[3] provides tools for the research of both the text-
analysis component and client/server application
development, it does not give aid for the development of
the acoustic database part of the TTS system.

The services of the MVoxDev development system are
categorized by their main functions. So we grouped
them into two categories. The first gives tools for
multilevel inspection and manipulation of all kind of
data to the researcher during the inspection and
resynthesis process. The other group provides services
for database development.

2.1 MULTILEVEL INSPECTION AND
MANIPULATION TOOLS

We modelied the speech generation process as a chain
of components which take part in the generation of
uttered speech (Fig. 2). The whole speech synthesizer
consists of three types of components. Some components
as e.g. the letter-to-sound converter, the prosody
generator part, the speech synthesizer are viewed as
active parts of the system, meaning they act upon the
received information from the previous component of
the chain with the aid of some external information (e.g.
letter-to-sound rules, intonation pattern information,
acoustic database etc.) that we regard as passive parts of
the CTS/TTS system. The third kind of components are
the buffers.

The active parts have inner variables to desribe the state
of the active component and hold the original input and
the transformed data. The passive components arc also
loaded into the active components and hence they can
be viewed as state variables, but they own the property
of persistency (i.e. they have to be stored on storage
media such as harddisk drives between consecutive
sessions) and because of that they should be handled in
a different way.

The MVoxDev development system provides access to
the inner variables for the researcher and the ability to
modify them on the fly, but he or she can store only
information which is persistant, like the acoustic
database or letter-to-sound rules. Giving access to the
variables in the active component - displaying the states
of inner state variables and providing mechanisms for
modifying them - makes the decision easier regarding
what parts of the active component need further
development, improvement or correction.

We had to draw a line between development, research
and debugging. This resulted in the architecture that the
system gives an insight view into the active component
while direct tools for passive components.

The third kind of components are the buffers. Buffers
are data storage units to hold data for the active
components. They contain their input and output. These
buffers are categorized into two classes. The ,,default”
buffers are part of the processing chain.

The other class contains the referable buffers. Reference
means that the data to be processed has additional
information about other sources of data (like how the
<sound src=> tag refers to a sound source in SSML
[4]). The data stored in buffers can be of any kind and
have to be ,,understandable” for the component and the

passive comp cnents

O =
PO

speech
data

active compon ents

input
text
(plain or
tagg ed)

\\ “defaut’ bu fers

J “referabl e” buffers

CTSITTS
subsystem

refere nced
dat

MutVox Session Manager

Figure 2 - Block diagram of the MultiVox CTS/TTS
multilingual synthesizer. The synthesizer has three kind
of components: active, passive components and buffers.

rest of the processing chain behind the component. The
data is represented in an SGML based language (similar
to SSML) called MVML (MultiVox Markup Language).
The data expressed in the MVML form could have
references to other data buffers. Data could be viewed by
a component as data to process or as command
sequences. In command sequences it is obvious that it
has to refer to other data to process. This makes it
possible to construct complex scenarios for dialogue
systems.

The referred data can be tagged text (e.g. with tagging
described in [5]), analyzed text with additional
information about its contents, sound codes with sound
level control codes, sound codes with physical
parameter codes (it is called intonation matrix in [5]),
speech data without intonation (concatenated elements
of acoustic units e.g. diphones), speech data with
additional information (sound properties - voiced-
unvoiced, sound boundary information etc.). The
repository of data types is extendable to other kind of
data.

In the development system each data type has an
assigned viewer/editor. The development system is
responsible to ask the synthesizer for sending the
requested data to the development system and to give it
to the proper viewer/editor. The reverse direction (i.e.
downloading data into the synthesizer) operates in a
similar way.

The development system presents the related
information in parallel windows. This is achieved by
using so called data renderers to describe how data
objects are connected to cach other. Data renderers are
responsible for presenting the data in the most
appropriate form to the user. If the user wishes, it can
provide him or her the data in different forms. E.g. the
FO contour could be presented in graphical way and/or

tabular way, where the numbers represent the pitch
variation and the columns are the places where the pitch
variation begins and ends.

It is an important feature of the system that it provides a
mechanism to handle the (logical and time based)
connections between the displayed data representations.
The editors and the connectivity of objects (e.g.
orthographic, sound code, intonation submatrix, wave
data portion representations of words) give help to the
user to inspect and manipulate data objects in place.
Connectivity means, if the user marks a portion of one
representation of the speech data (e.g. sound codes), this
is reflected in other representations. This is a key issue
to achieve faster research - experiment - evaluation
cycle. This is supported by the real-time synthesizer
built into the system.

2.2 DATABASE DEVELOPMENT

To give a well suited technology for the creation of
synthesizers for different languages, the system is
organized to handle language dependent parts in a
unified way using a defined method to handle the
differences. For one hand it means that the passive
components of the system are modelled by one reference
model. On the other hand the model generalizes the
meaning of the element of a database, thus giving
opportunity to make the database customizable. This
gives the keeps the development system simple and
gives aid at the same time for different development
purposes. The passive components are handled as they
have ,regular parts” and exceptions. At the grammatical
level this means to have common rules and exceptions
having their original meaning.

At the acoustic database level this means, that a
database can have diphones or triphones as ,regular”
clements, they can be accessed using by rules, and
should have been in the system during normal
operation. Exceptions are other elements in the same
data representation (e.g. waveform data with proper
tagging to help further processing) the database could
have. This property is granted by the generalized and
flexible database architecture used in MultiVox.

This kind of flexibility of the system enables either to
use diphones or even triphones for synthesis and/or to
use phrases, sentences or larger texts and applying
intonation curves on them using a synthesizer. This
latter technology (canned messages with synthetic
speech [6]) is becoming more popular in dialogue
systems where the quality of the system is a key issue.
With this technology diphone based synthesis can
coexists with concatenation technology.

The database development tool gives three services to
the user.

At the first stage of database development, the
researcher has to create the first version of the database
from spoken corpora. This procedure is to be semi
automatised, where the segmentation of the elements
will be done by manually inputting the textual
representation of the spoken text. The researcher has to
have the raw waveform data to be marked, to extract
useful infromation from the spoken text (to have
information about where a sound begins and ends,
whether a sound is voiced, where are the beginnings of
periods in a voiced sound, etc.). This tool helps the
database developer to extract the eclements (here
diphones and triphones) from these marked speech
waveforms. The development system provides
additional services to correct the waveforms. Automatic
amplitude equalization, manual manipulation
capabilities are supported as well. These are introduced
below.

For those data, that have any common property which
can be adjusted by an appropriate process, the
development system gives the opportunity to make this
adjustment automatically. This automatic adjustment
currently is under testing for amplitude adjustment for
one speaker and one language. This part of the system is
flexible enough to accept modules implementing
different algorithms for adjustment. Adjustment should
be applied for FO and for the length of the element.
These parameter equalisations in the database should be
applied for new databases too, and also for other
speakers and other languages. This could ensure, that
the generated speech of the speech synthesizer sounds at
approximately the same quality. This means that if we
want to have several databases with approximately the
same quality - with the same loudness, pitch -
(parameters included FO, average energy, etc.)
generated from different spoken corpora we have to
adjust them regarding the parameters mentioned above.
The functions, implementing the different algorithms
use predefined initializaton files to enable manual
adjustment on parameters. These tools are also very
useful to get information about the database (e.g.
average energy, FO, etc.).

After the automatically created database a fine tuning
process has to be done using human knowledge and
experience. This knowledge can be put into reality by
using the data manipulation tools. These tools enable
the developer to manually modify each element.
Modification means shortening and lengthening an
element, pasting some parts to it, adjusting amplitude,
etc. During resynthesis the developer can easily check
whether the modification yields a better result or not
and what other elements are to be adjusted next.

This technological process helps the developer to get
acquainted with the database creation after a short
training (no deep phonetic knowledge is needed).

Because of the fact that nowadays most dialogue
systems use speech technology, it is reasonable to
support that task.

3 CLIENT/SERVER ARCHITECTURE

As it was mentioned in the introduction, the system uses
a client/server architecture. We have chosen this
architecture because we wanted to make the
development system flexible, modular and to shorten
phase between the research and application.

Figure 1 shows the MVoxDev-MultiVox client/server
model. The application is the client and the synthesizer
is the server. In the development system, the software
bounding the development tools also acts as a client. It
has the advantage that the development system can be
used as a kind of debugger (although this is not its main
role).

Communication between the client and the server is
carried out in three ways: DDE communication between
the client and the server as the base communication
mode. This is for getting in connection with the server,
because the rest is carried out at a higher level. The
higher layer is implemented above that. It implements
an SGML based markup language, called MVML. Data
written using this language is interpreted by the server.
E.g. the client can ask the server to construct a
synthesizer using the letter-to-sound converter, a
waveform based synthesizer, a specified database and to
name it SYNTHESIZERI, then use it for a marked up
text. An example of data sent to the synthesizer using
MVML:

<MVML>

<COMMAND>

<ALLOCATE SYNTHESIZER=SYNTHESIZER1>
<PARAMETER LANGUAGE=GERMAN>

<INSERT ELEM=LETTER2SOUND_CONVERTER>
<PARAMETER STYLE=NORMAL>

<INSERT ELEM=WAVEFORM_SYNTH>
<PARAMETER SPEAKER=MALE2>
</COMMAND>

<USE SYNTHESIZER=SYNTHESIZER1>

<TG TYPE=5>

Mehr dazu finden Sie

<FOCUS>

LINKS im blauen fenster

<TG TYPE=.>

</TG>

</MVML>

Besides these two ways of communication the system
uses callback functions to exploit real-time capabilities
of the host operating system and thus provide fast
feedback for the developer.

4 CONCLUSION

The baseline of the MVoxDev development system
described above is currently running on the Windows
platform, insertion of functions, modules and the
transportation to UNIX are underway. The services and
tools provided by the system to the researcher or
developer can shorten the process of development by
giving many informative data in a well organized way
to him or her. The system is extendable and this further
broadens this previously mentioned property.

The architecture of the development system fulfiles the
needs of the researcher by providing useful tools for
linguistic research, of the database developer by giving
automatic database inspection tools and adjustment
services and finally of the application developer, who
wants to build an application using and perhaps
customizing the synthesizer.

REFERENCES:

1] Hugo C. van Leeuwen - Enrico te Lindert: Speech
Maker: A flexible frameworkfor constructing text-to-
speech systems. In Vincent J. van Heuven and Louis C.
W. Pols (editors): Analysis and Synthesis of Speech,
pp. 317-338, Mouton de Gruyter, 1993.

[2] Alissali, M., Bailly, G.: COMPOST: A Client-
Server Model For Applications Using Text-to-Speech
Systems. Proceedings of Eurospeech ‘93, Vol. 3
pp. 2095-2098, Berlin, Sept. 1993.

[3] Black, Alan W., Taylor, Paul: The Festival Speech

Synthesis System, System documentation, 1997.
http://www.cstr.ed.ac.uk/projects/festival.html

[4] Isard, Amy: SSML: A Markup Language for Speech

Synthesis, thesis, 1995
http://www.sil.org/sgml/gen-apps.html#ssml

[5] Gabor Olaszy, Géza Németh,: Prosody generation
for German CTS/TTS systems (from theoretical
intonation patterns to practical realisation). Speech
Communication, pp. 37-60, Issue 21, 1997.

[6] Pearson, S., Holm F. Hata, K.: Combining
Concatenation and Formant Synthesis for Improved
Intelligibility and Naturalness in Text-to-Speech
Systems. International Journal of Speech Technology,
pp. 103-107, Vol. 1, No. 2, 1997.

