CSLUsh: AN EXTENDIBLE RESEARCH ENVIRONMENT

Johan Schalkwyk, Jacques de Villiers, Sarel van Vuuren and Pieter Vermeulen

Center for Spoken Language Understanding, Oregon Graduate Institute of Science and Technology, 20000 N.W. Walker Road,
P.O. Box 91000, Portland, OR 97291-1000, USA

ABSTRACT

The CSLU shell (CSLUsh), is a collection of modu-
lar building blocks which aim to provide the user with
a powerful, extendible, research, development and imple-
mentation environment. Implemented in C with standard-
ized Tcl/Tk interfaces to provide a scripting and visu-
alization environment, it allows a flexible cast for both
research algorithms and system deployment. This shell
is the architecture on which the CSLU Toolkit is built
and may be downloaded for non-commercial use from

http://www.cse.ogi.edu/CSLU /toolkit.

1. INTRODUCTION

With the advent of the information age, it has become in-
creasingly important for researchers and developers of human
language technologies and other communities to be able to
share ideas and technology. Sharing of actual algorithmic
implementations has been limited due to the wide variety
of computers and operating environments used around the
world. In a multi-disciplinary field such as human language
technology, it is advantageous to researchers with differing
backgrounds to share results in a timely fashion and com-
prehend the interactions of recent advances.

A single transparent research and implementation tool
would stimulate research by creating an environment in
which ideas could be shared by the exchange of code without
consideration of issues such as cross platform portability.

Our solution to this problem built on previous efforts [1],
was to implement real-time systems and to let researchers
share in, and incorporate the latest advances effortlessly.
Great care was taken to design all of the core components
to operate in as efficient and consistent a manner as pos-
sible, with special attention given to modularity, portabil-
ity and extendibility. In addition, implementation consider-
ations such as pipelining, networked sharing of computing
and input/output resources for real time systems have been
addressed.

Implemented in Tcl/Tk [2] and C, CSLUsh supports a wide
range of research activities, including data capture and anal-
ysis, corpus development, research in multi-lingual recogni-
tion and understanding, dialogue design [3], speaker recog-
nition and language identification, among others. CSLUsh
has also been used to implement real-time speech recogni-
tion systems capable of handling multiple telephone conver-
sations [4].

In this paper we describe the architectural foundation of
the CSLU shell. Section 2 describes the software architec-
ture. Section 3 discusses each of the core components.

2. SOFTWARE ARCHITECTURE

CSLUsh Programming Environment

Device I/O0

Core Tcl/Tk Libraries

Modeling

Figure 1. Software Architecture of the CSLUsh.

Figure 1 presents the software architecture of CSLUsh. Its
foundation is a set of efficient, and where necessary, pipelined
C libraries (CSLU-C) for the functions which support the
basic algorithmic operations and associated utilities. These
libraries can be used directly with a documented C API to
build applications.

The extendible scripting language Tcl is used to access
functionality in an efficient scripting environment, by cre-
ating core components (Tcl packages) which “glue” the ba-
sic operations according to a well defined API. Individually,
each core component extends the usability of CSLUsh by pro-
viding specific capabilities such as, for example, networking
or matrix manipulation. Collectively these building blocks
form an environment in which one can with ease plug and
play various components in order to design, debug and exe-
cute complex algorithms. As with Tcl, CSLUsh also provides
error messages, command stack tracing and exception han-
dling.

The packages are dynamically loaded as needed, providing
a small footprint for implementation. This mechanism also
allows for easy alteration and extension by a user. Following

the documented API, a different version of an existing algo-
rithm or a new functionality can be separately compiled and
will seamlessly become part of CSLUsh. The standard Tcl
version control mechanism allows for managing these changes
and additions.

Although the software has a strong emphasis on spoken
language technology many of the core components are useful
in other domains as well.

3. CORE COMPONENTS
Networking

The Toolkit was developed in an environment which makes
heavy use of distributed computing. CSLUsh extends Tcl to
provide client/server communications (e.g. telephony and
TTS) and facilitate optimal data and code passing for re-
mote execution of scripts. Servers are managed by a central
registry daemon.

Input and output data are treated as generic objects,
which can be automatically and efficiently transported across
the network and saved to and loaded from disk. The ob-
jects are conventional C data structures represented at the
CSLUsh level as simple string identifiers. Byte format con-
versions and memory management are handled transparently
and networking 1s optimized to fit the object size.

Figure 2 presents an example of this process. The client
reads a speech wave file from disk and sends it to the server.
Each time the server receives a wave object it calls the
handleWave procedure, which in this example prints out
some information regarding the received wave object, using
the wave info command.

Client Server
typedef struct { typedef struct {
short *samples; short *samples;
int len; int len;
} Wave; } Wave;
Client

context link client mrburns 9999 secret
set w [wave read test.wav]
client send $w

Server

proc handleWave {server clientlD cntr obj} {
puts [wave info $obj]

}

context tcp server -port 9999 -password secret

server container wave handleWave

Figure 2. Client/server communication.

This generic approach to data handling (object serializa-
tion) allows complex algorithms to be trivially run in a dis-
tributed manner with different steps of the computation oc-
curring on different machines. This example will run across
machines with different operating systems and byte order.

Device I/0

Device input/output builds upon the generic data objects
utilizing an object oriented design, which allows for the de-
sign of consistent interfaces to a wide variety of input and
output devices such as the PC speaker, a voice modem, and
a text-to-speech (TTS) engine.

The following example creates a new TTS object and
attaches to any TTS server on the network (i.e. one
that has been registered with the central registry dae-
mon). Next an audio object is created and attached to
the audio device on the local machine. This could also
have been a telephone line interface. The application is
shielded from the differences between such audio devices.

TTS create text2speech "TTS Demo"
Audio create desktop "Audio Demo" {hostname local \
type audio}

Finally the Wave event output of the TTS object is con-
nected to the Wave event handler of the audio device. Once
these connections have been made any audio output gen-
erated by the TTS object will be sent to the speakers.

text2speech addWave-> desktop <-Wave
text2speech <-Text "Hello, world."

Note that this mechanism provides for non-blocking asyn-
chronous communication with the various devices, allowing
real-time implementation of input-driven systems.

Math

Matrices (Array objects) are used extensively throughout
CSLUsh for input and output results. For example feature
processing and modeling make extensive use of often huge
matrices. To allow assimilation, partitioning, transformation
and inspection of these matrices the CSLUsh development en-
vironment includes a math module. Named Mx, this module
provides extensive scripting capability for matrix and vector
math.

In addition to the usual math operations (real, complex,
element-wise, ranging etc) Mx allows operations on lists such
as

set x [mx join row [list $a $b $cJ]

One of the powerful features of Mx is that it allows the
programmer to explicitly control memory usage. Advantages
of this include considerable execution time speed-ups and a
generally small memory footprint.

As an example of such functionality, consider the equation

r = cov(y)cov(z) ™",

where = and y are data matrices, and “cov” 1is the

covariance. Furthermore, suppose that this equation
will be called many times in a loop so that consider-
able speed-up may be gained by exploiting the mem-
ory usage of temporary variables. The following code
fragment details how this may be done using Mx.

mx cov $x S_x

mx cov $y S_y

mx cholinv $S_x Si_x

set r [mx prod $S_y $Si_x]

Here the suffix position for the temporary variables S_x,
S_y, and Si_x indicates to Mx to allocate memory for them
only at the first pass of the loop and on subsequent passes
to simply overwrite their contents. A prefix position on the
other hand indicates to Mx not to reuse memory — as for the
variable r in the above example. This implementation al-
lows execution speed to approach that of dedicated C-code.
To change the above code fragment to ignore the first 2
rows of S_y in the product it suffices to specify a subrange

set r [mx prod $S_y.(:2,:) $Si_x]

Other CSLUsh modules can inherit Mx ’s characteristics
through the CSLU-C API.

Speech Processing

Signal processing includes support for the usual feature pro-
cessing routines such as PLP, MFCC and LPC. It also
includes their delta and Rasta derivatives. All process-
ing routines are fully pipelined and therefore easily cas-
caded. The pipelining allows for real time processing of
speech in systems; i.e. using the time the current input
is being created to process previous chunks of it, instead
of waiting for the phrase to complete. The example be-
low illustrates this concept by filtering each of the linear
predictive cepstral coefficients (LPC) using a Rasta fitler.

set w [wave read test.wav]

set Ipc [analysis Ipc initialize]

set wipc [analysis Ipc $lpc $w]

set rasta [analysis rastafilter initialize 12]
set wrasta [analysis rastafilter $rasta $wipc]

Work is in progress on integrating a new feature process-
ing module into the Toolkit. This module extends existing
features to include pitch extraction, cepstra, filter bank out-
puts and frequency selective versions of PLP and MFCC.
Another module provides robust speech/non-speech detec-
tion by adaptively tracking the noise floor in a speech signal.
A further module provides uni- and multi-dimensional FIR
filtering (in time and frequency) as well as LDA-based anal-

ysis [3].
Modeling

Modeling includes neural networks (classifiers and regression
models), vector quantization, gaussian mixture modeling and
hidden Markov modeling (CSLUhmm).

These modeling techniques are to a large extent inter-
changeable. For example the embedded reestimation algo-
rithm provided by the main HMM library may also be used
to reestimate neural network targets [6]. Parameter tying
may be done at either the model, state, mixture component,
mean and/or covariance level. The HMM package also sup-
ports decision tree state clustering and triphone synthesis to
provide a framework in which to build full context dependent

recognizers.

Vector quantization using the LBG algorithm
with iterative cluster splitting

set gvqob [gvq configure -iter $iter -mix $mix]
gvq initialize $gvgob vq
foreach speaker $speakerlist {
while 1 {
foreach wav $wavfiles($speaker) {
set data [feature $wav]
gvq Ibg::accumulate $gvgob $data vq
nuke $data
}
if {![gvq Ibg::update $gvgob $vq]} break
}
obfile write $fob $speaker $vq
gvq reset $vq
}

Figure 3. Training multiple vector codebooks.

Throughout the design and implementation of these
modeling techniques we took care to minimize resource
usage. To build large systems with limited resources
we took care to optimize both memory and execution
time requirements. Based on these considerations a typ-
ical training session may be conceptually scripted as:

model configure
loop models:
model initialize
loop files:
model accumulate
end
model update
model save
model reset
end

The typical procedure of initialize, accumulate, update,
save and reset allows all model parameters and training vari-
ables to share the same memory during training. The static
memory footprint is thus dependent only on the size of the
largest model to be trained with the dynamic memory deter-
mined only by feature computation. The code fragment in
figure 3 illustrates this process by computing several vector
codebooks and saving them to disk in a machine-independent
format using the generic object interface described earlier.

HMM models are created and configured using CSLUhmm
configuration scripts. Figure 4 presents an example. In this
example monophone models are created for the phonemes
/w/, /ah/, /n/, /[sil/ and /[sp/. The short pause model
(/sp/) is then tied to the center state of the silence model
(/sil/). The HMM configuration language provides a mech-
anism in which one can specify new HMM models and also
edit existing HMM models. The collection of such scripts

documents the process of building a recognizer in an easily
readable and understandable format.

prototype mono numstate 5 mixtures 3 transp
0.000 1.000 0.000 0.000 0.000
0.000 0.600 0.400 0.000 0.000
0.000 0.000 0.500 0.500 0.000
0.000 0.000 0.000 0.600 0.400
0.000 0.000 0.000 0.000 0.000;

prototype onestate numstate 3 mixtures 3 transp
0.000 0.500 0.500
0.000 0.500 0.500
0.000 0.000 0.000;

define mono <w> <ah> <n> <sil>;
define onestate <sp>;

tie <sil>.state[2] <sp>.state[1];

Figure 4. Hmm Configuration.

All of the above mentioned functionality is integrated
within the CSLUsh environment. A stand-alone application
such as HMM embedded training is therefore just another
CSLUsh script which reads a set of predefined input files and
performs embedded training. The user can with relative ease
change such applications to meet specific needs, rather than
comply with the predefined interface. For example rather
than computing features and then having the training scripts
read these feature files, the standard training scripts can be
altered to compute the features on the fly.

Further technology being integrated within the CSLUsh
framework includes vocal-tract normalization (VIN), maxi-
mum a-posterior (MAP) training, speaker adaptive training
(SAT), and maximum likelihood linear regression (MLLR)
adaptation. Currently these algorithms are being used to
build the OGI large vocabulary recognizer and the OGI
speaker recognition system.

Decoding

Decoding incorporates Viterbi decoders for word spotting
and finite state grammars, within the CSLUsh framework.

Currently under development is a three pass (Forward,
Backward, A*) search [7] which works with HMMs and Neu-
ral Network hybrids interchangeably. In this implementation
the Backward/A* search is used as a framework in which to
incorporate N-gram language models. For large vocabulary
tasks (5k — 65k words) we are also working on a dedicated
decoder based on pronunciation prefix trees.

4. CONCLUSIONS

Several applications have been developed with the CSLUsh
programming environment. The CSLU rapid prototyper
(CSLUrp) is a graphically-based authoring tool built on top
of CSLUsh that enables the iterative design and immediate
testing of spoken dialogue systems. The Toolkit also includes

a display tool Lyre, which provides basic browsing capabili-
ties by extending the underlying Tk widgets with a waveform
display, a generalized spectrogram display and a label display
widget.

Our hope in releasing this Toolkit is to engage a large
number of people in a participatory design to create and
donate increasingly more powerful tools.

The Toolkit is released with source code so that any who
desire can improve it. We hope that new users will bring
new perspectives and new capabilities to the Toolkit, and
that these improvements will be shared with us and others
so that all may benefit.

ACKNOWLEDGMENTS

A large group of people have contributed and are continuing
to enhance this Toolkit guided by the vision of Ron Cole who
initiated this effort and Mark Fanty who currently manages
the Toolkit project. Much of the initial speech functionality
was inherited from the OGI speech tools authored by many
including Mark Fanty and Fil Alleva. The inputs, algorithm
contributions and suggestions of the users at OGI have been
extremely helpful.

This work is co-sponsored in part by ONR and ARPA

grant xxxx and CSLU center members.

REFERENCES

[1] M.Fanty, J.Pochmara, and R.A.Cole, “An interactive en-
vironment for speech recognition research,” Proceedings
of the International Conference on Spoken Language Pro-
cessing, October 1992.

[2] J. K. Ousterhout, Tcl and the Tk Toolkit. Addison-
Wesley, 1994.

[3] S.Sutton, D.Novick, R.Cole, P.Vermeulen, J.deVilliers,
J.Schalkwyk, and M.Fanty, “Building 10000 spoken dia-
logue systems,” Proceedings of the International Confer-
ence on Spoken Language Processing, October 1996.

[4] R.A.Cole, D.G.Novick, P.J.E.Vermeulen, S.Sutton,
M.Fanty, L.F.A . Wessels, J. Villiers, J.Schalkwyk,
B.Hansen, and D.Burnett, “Experiments with a spoken
dialogue system for taking the u.s. census,” Free Speech
Journal, hitp://www.cse.ogi.edu/CSLU /fsj/html, vol. 1,
1997.

[5] S. van Vuuren and H.Hermansky, “Data driven design of
rasta-like filters,” this proceedings, 1997.

[6] Y.Yan, M.Fanty, and R.Cole, “Speech recognition using
neural networks with forward-backward probability gen-
erated targets,” Proceedings of the International Confer-
ence on Acoustic, Speech and Signal Processing, vol. 1V,
pp. 3241-3244, 1997.

[7] F.Alleva, X.Huang, and M.Hwang, “An improved search
algorithm using incremental knowledge for continuous
speech recognition,” Proceedings of the International
Conference on Acoustic, Speech and Signal Processing,
vol. I, pp. 307-310, 1993.

