
ABSTRACT

This paper presents a new interactive speech processing
environment designed for Microsoft Window platforms.
It will be shown that how an integrated speech
processing environment was made following Windows
Interface Design Guidelines. The environment
integrates many traditional time and frequency domain
analysis algorithms as well as basic functions like
recording, listening and labeling. Choosing Component
Object Model (COM) as the architectural framework
assures high maintainability, scripting capability and
further expandability of this environment. Extensive use
of the system in laboratory has shown how this
interactive environment improves users performance in
their every day speech processing tasks.

1 INTRODUCTION

Today, personal computers offer such a powerful
processing performance that running big scientific
applications on PCs becomes a simple task. Users’
working-model is rapidly changing and they constantly
need more interactive, sophisticated and flexible
environments in their work. A number of signal
processing packages are available even in PC platform,
but in speech processing we specially work with huge
amount of contiguous data and these packages are not
really adapted for such tasks. We need to synchronize
long streams of data, browse in and compare them
rapidly. We need to label signals automatically and/or
manually in many distinct levels of detail and easily
modify them when needed.

For many years Unix stations offered reliable and
maintainable solutions where one could have sufficient
continuity and compatibility between different versions
of a product. But the Unix based solutions are still quite
expensive. The complex nature of interactivity, working
with huge amount of data and the cost performance
ratio leaded us to develop such an interactive
environment on Microsoft Windows 32 bit platforms
(Windows NT and Window 95). This selection provides
an attractive environment for every day tasks of speech
processing while proposing much less expensive
solutions than the comparable Unix based solutions.

In the other hand to keep in pace with ever changing
world of computing we had to choose an architectural

framework that would allow good modularity and
maintainability of our system. To have a longer system’s
life cycle we needed a component based framework in
which we integrated a scripting language that allows
end users to further expand their working environment
by adding new components. This component approach
allows us to dynamically replace or add elements
without side effects on the other parts.

This paper presents the implemented environment, and
shows how COM architectural framework helped to
develop an open and easily configurable package.
Section 2 presents some architectural details of current
system and section 3 describes WaveEdit user interface
and signal processing features in more detail. We
conclude our description by presenting some real
situations in which WaveEdit could be used.

2 WAVEEDIT ARCHITECTURE

Since many years object oriented programming (OOP)
paradigm has helped many system designers to create
easily maintainable environments. OOP like many other
paradigms was subject to some important evolutions.
Today we talk about self contained components in
OOP. While traditional objects follow a hierarchy to
implement the same interfaces, components support one
or more abstract interfaces out of hierarchy. By
supporting a specific interface a component provides
the same functionality on his specific data type. The key
is that components don’t need to keep a heritage
relationship to provide the same operators on their
specific data types. Once a component implements an
interface (each interface is known by its Global Unique
ID number) it can called regardless of the data type it
supports.

However there are many important points about
software engineering side of the component paradigm
(COM) [2], our goal will be to show how components
build up WaveEdit interactive environment and how the
environment could be used in some real projects.

WaveEdit is thus composed of some interconnected
components providing system functions. The major
components of current WaveEdit package are shown in
hierarchy order in Fig. 1. Each component has a
predefined interface and other objects have access to
object methods only through these interfaces. Some
generic interfaces have been also defined to simplify
addition of new components.

 WAVEEDIT, AN INTERACTIVE SPEECH PROCESSING
ENVIRONMENT FOR MICROSOFT WINDOWS PLATFORM

M. Akbar

Laboratoire de la Communication Langagière Interaction Personne Système
Université de Joseph Fourier, 38041 Grenoble cedex 9, France

Tel. +33 4 76 51 45 26, FAX: +33 4 76 44 66 75, Email: Mohammad.Akbar@imag.fr



As it is obvious from Fig. 1 WaveEdit is largely made
of a Multi Document Manager (MDM) that allows
working on multiple signals and parameter sets at a
time. Different documents may be synchronized by
messages passed through MDM. It can thus contain
more than one Document Manager (DM) and Graphical
User Interface Manager (GUIM) at a time. In WaveEdit
terms a document is a combination of a sound file, it’s
associated parameters (acoustic, spectral,…) and labels.
Some other configuration variables are also associated
to each document in order to keep user preferences.
Each document has a graphical representation at run
time that is essentially made of four components: Signal
Viewer, Parameter Viewer, Label Viewer, and Sync
Viewer. The first three components are simply time
representations of their respective information. They
provide scaling, translation and selection on these
primitives. The fourth one is a separate representation
providing a cross section of spectral or some other
suitable parameter arrays synchronized by a label's
position. GUIM provides also some other important
components like a dynamic label palette --user can
choose a label from palette and place it in the
documents-- and a contextual menu --this gives a fast
access to the mostly used commands.

As said before, each document keeps track of three
connected components: Signal, Labels and Parameters.
DM provides methods to save and load them in a
compact native format. At the same time it provides
import and export facilities to convert between major
existing data types and native format. DM is supported
by Signal, Label, and Parameter Managers to provide
basic operations on these data types. Their most
important function is to provide fast access to very big
resources. This has been achieved by clever memory
management and optimization. As a example CD
quality signals of even 2 hours long, a 660 MB file,

could be easily worked on. Signal Manager also
provides recorder/player interface directly used by
Signal Viewer to provide integrated recording/listening,
facilities to the system.

Document Manager is composed of another major
internal component called Signal Analyzer. As it's name
stands for, this component answers to the signal
processing needs of the system. Parameter Manager
uses the Signal Analyzer to calculate parameters of
input raw signal (Fig. 2) provided by Signal Manager.
Calculated parameters are stored in a file and can be
accessed through Parameter Manager Interface. In
some cases Parameter Viewer may directly use the
same component to calculate parameters on the fly. This
approach trades memory and disk usage by slightly
increasing processing time. The major parameter array
calculated this way is a running spectrogram that if
implemented by Parameter Manager could drastically
increase disk space usage. The Signal Analyzer is itself
composed of some low-level components that provide
different type of signal processing. These include
spectral (e.g. LPC, LAR, PLP, and Ear Model),
voiced/unvoiced, pitch, and some acoustical parameters
directly derived from production models.

Although not shown in Fig. 1, there are some other
components that create the real user interface of system,
provide cut, copy, paste facility, and do low level signal
processing, recording, playing and so on. In the next
section while presenting the actual system you may see
the major components from which the WaveEdit system
is made up. As an interesting example Fig. 4 shows a
graphical representation of a document directly inserted
into a Word document using MetaFile Generator
component.

Multi Document Manager
GUI Manager

Synchronizer

Signal Viewer

Parameter Viewer

Label Viewer

Sync Viewer

Label Palette

Contextual Menu

Document Manager
Storage Manager

Save Load

Import Export

Parameter Manager

Signal Manager

Label Manager

Signal Analyzer

Multi Document Synchronizer

System Level Interface

Clip Board Manager Audio Device Interface

Enhanced Meta File Generator

Fig. 1. WaveEdit environment major components hierarchy Fig. 2 WaveEdit Signal Analyzer main dialog



3 ACTUAL WAVEEDIT SYSTEM

By the time the current version of WaveEdit
Environment is 1.05 beta and entirely implemented on
Visual C++. However any other programming language
supporting COM (e.g. Microsoft Visual Basic, Borland
C++) may be used to create and add new features to the
environment.

In a user interface point of view respecting Windows 95
Interface Guidelines [6] allowed us to design a
harmonized and easily understandable interface for
Windows 95 and Windows NT 4.0 users.

In a signal processing point of view many traditional
algorithms regarding prosodic studies have been
implemented in the current system. These include a
proprietary Voicing Analysis based on Neural Network
classifiers that uses spectral parameters to determine
voicing state of speech signals. This NN comes pre-
trained as a help to the user to bootstrap his data set but
users may ask for online retraining based on a labeled
speech signal (or corpus) to improve NN performance
for specific data. A fast and accurate pitch-tracking
component, based on a modified AMDF evaluation, has
been also added to Signal Analyzer component.

Current WaveEdit environment has been used in some
projects in the laboratory. These projects were
essentially about manually and automatically labeling
of large speech corpora. As an example two, CD-ROMs
including more than 15 hours of continuous speech
have been produced and labeled entirely using the
WaveEdit environment for AUPELF-UREF ARC B2
[8] task. These CD-ROMs are available through the

aforementioned action. In another project a large speech
corpus created in order to study relations between
speech act and prosodic features has been entirely
labeled [9]. The produced corpus is provided on a single
CD-ROM and will be available in a near future.

To better understand the features of current
implementation a brief description of major functions of
WaveEdit environment is presented in the following.

3.1 Visual Interface Features

Fig. 3 shows a general look of WaveEdit 1.05
environment in use. Its Major visual interface features
are listed below:

• Multiple time synchronized documents,
• Multiple view on a single documents containing

Signal, Parameters and Labels,
• Synchronized view of document elements,
• Selective playback of regions,
• Multiple level selective label editing,
• Scaling functions (in time and amplitude),
• Contextual menus allowing rapid access to

available commands in each editing region,
• User configurable dockable/floating label palette,
• Dockable or floating command palettes for fast

access to the frequently used commands,
• A large set of customization options,
• Copy/Paste to other documents,

3.2 Signal Processing Features

WaveEdit 1.05 implements the following list of well-
known signal processing algorithms and related
functions:

Fig. 3 A general look of WaveEdit environment in use



• Recording functions (selective sampling frequency
and format with optional real time silence detection
feature useful in recording large corpora),

• Energy, Zero crossing, Pitch frequency measures,
• Autocorrelation, Linear Prediction [4], Log Area

Ratios[4], Reflection[4], Cepstral [4] and Ear
Model[7] parameters calculation,

• Spectral distance measures,
• Statistical measures on Energy and Pitch including

Mean, Variance, Min, Max,
• Real time Spectrogram calculation with adjustable

band width and temporal resolution through user
interface,

• Cursor synchronized Spectrum, Autocorrelation,
AMDF,… calculation,

• Proprietary pitch tracking algorithm,
• Rupture model derived segmentation [1],
• Neural Network derived segmentation [5],
• Vector Quantization derived segmentation [3].

As it's stated before improvements and additions to the
current list is easily provided by writing new
algorithms, following the component writing style and
adding them to the list of supported components.

3.3 Data Base and File Processing Features

In WaveEdit 1.05 keeping track of large corpora is
made possible by using a tree structure corpus
architecture that indexes on recorded signal, spoken
text, associated label information, speaker information,
repetition count and recording conditions (date, audio
recording material used,…). In the following we present
a part of functions supported in this category:

• Unlimited input file length,
• Tree structure corpus creation/modification,
• Multiple open documents at a time (MDI),
• Direct support of PCM 8 and 16 bits Wave and

Raw format by Signal Manager,
• Support of other Wave formats (e.g. DPCM,

ADPCM) through Import/Export tool,
• Proprietary parameter and label files format,

convertible to human readable text files (TIMIT,
HTK and PTS formats are supported),

• Printing and Exporting Image of selected regions.

4 CONCLUSIONS

In this paper a highly interactive speech-processing
environment specially under Windows 95 and Windows
NT platforms has been presented. The choice of
platform and architectural framework has been
explained. These choices leaded to a low cost solution
for speech processing. The features of current
implementation were briefly described. We have also
presented some real situations in which WaveEdit has
been used successfully. Those applications include
segmentation applications and corpus generation tasks.

5 REFERENCES

[1] R. André-Obrecht., "A new statistical approach for the
automatic segmentation of continuous speech signals", IEEE
Trans. Acoust., Speech, Signal Processing, vol. 36, no. 1, pp.
29-40, January 1988.

[2] D. Rogerson, Inside COM Microsoft’s Component Object
Model, Microsoft Press, 1997.

[3] J. Makhoul, S. Roucos, H. Gish, "Vector Quantization in
Speech Coding", Proceedings of the IEEE, vol. 73, no. 11,
1551-1588, November 1985.

[4] J. Makhoul, "Linear Prediction: A Tutorial Review",
Proceedings of the IEEE, vol. 63, no. 4, 561-580, April 1985.

[5] Richard P. Lippman, "Review of Neural networks for
Speech recognition", Neural Communication 1, pp. 1-38,
1989.

[6] N.W. Cluts, Programming the Windows 95 User
Interface, Microsoft Corporation, 1995.

[7] J. Caelen, M.K. Nasri, E. Reynier, H. Tattegrain,
"Architecture et fonctionnement du système DIRA. De
l'acoustique aux niveaux linguistiques", Traitement du Signal,
vol. 7, no. 4, 1990.

[8] AUPELF-UREF, Action de recherche concertée,
"Linguistique, Informatique et Corpus Oraux: Dialogue Oral",
CD-ROM OTG 1 & 2, 1997.

[9] CAELEN-HAUMONT, G. et BESSAC, M. La prosodie,
de la sémantique à la pragmatique. In : RSP, Actes des
Rencontres de Sémantique et Pragmatique, Saint-Denis, 4-5
octobre, 1996. Paris : Université Paris III, 1996.

Fig. 4. An example of inserted WaveEdit document into Word


