
MUSE: A SCRIPTING LANGUAGE FOR THE DEVELOPMENT OF
INTERACTIVE SPEECH ANALYSIS AND RECOGNITION TOOLS 1

Michael K. McCandless and James R. Glass

Spoken Language Systems Group
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 USA

http://www.sls.lcs.mit.edu, mailto:fmike, jrgg@sls.lcs.mit.edu

ABSTRACT
Speech research is a complex endeavor, as reflected in the nu-
merous tools and specialized languages the modern researcher
needs to learn. These tools, while adequate for what they have
been designed for, are difficult to customize or extend in new
directions, even though this is often required. We feel this sit-
uation can be improved and propose a new scripting language,
MUSE, designed explicitly for speech research, in order to fa-
cilitate exploration of new ideas. MUSE is designed to sup-
port many modes of research from interactive speech analysis
through compute-intensive speech understanding systems, and
has facilities for automating some of the more difficult require-
ments of speech tools: user interactivity, distributed computa-
tion, and caching. In this paper we describe the design of the
MUSE language and our current prototypeMUSE interpreter.

1. INTRODUCTION

The needs of speech understanding research place unique de-
mands on supporting tools and systems. Interactive tools al-
low students and researchers to explore the properties of speech
and to evaluate the strengths and weaknesses of current ap-
proaches to speech understanding. For compute-intensive train-
ing and testing we may need tools which can distribute load
across many networked computers as necessary. We may use
databases to represent our corpora, and statistical tools to study
distributional characteristics. Often speech systems need to be
flexible so as to trade off accuracy for real-time performance
depending on whether one is conducting research or giving a
demonstration. In all cases, these tools must be flexible and
grow with our changing needs as new research breakthroughs
occur.

While there exist numerous tools for certain areas of speech re-
search [2, 3, 5, 9], we still frequently find it necessary to build
our own tools [4, 10]. This might take the form of creating sets
of scripts in a scripting language like Python [8], Perl, Csh or
Tcl [7], using Unix tools such as Make and CVS to maintain
recognizer configurations as they change over time, or resort-
ing to a systems programming language like C or C++. Such
languages are required primarily because existing systems are
difficult to extend and integrate with one another. In our ex-
perience, most tools that are used within a research group are
those that were developed “in-house” in systems programming
languages.

In our opinion, progress in speech research is greatly limited
by the difficulty of creating new tools or customizing existing

1This research was supported by DARPA under contract N66001-
94-C-6040, monitored though Naval Command, Control and Ocean
Surveillance Center.

ones. There are many tools we need to create, but existing lan-
guages do not address the particular needs of speech tools. We
propose a new high-level scripting language,MUSE, to address
these limitations. MUSEis designed specifically to make it eas-
ier to build tools which satisfy the needs of speech research,
including facilities for automating user-interactivity, distributed
computation, and short- and long-term caching.

MUSEis an abstract language, and we are actively designing all
aspects of its syntax and semantics. At the same time, we de-
sign and test prototypeMUSE interpreters which conform to the
syntax and semantics of theMUSElanguage. Much of theMUSE

language has now been designed, and we have built various pro-
totype interpreters which are able to execute certain subsets of
MUSE. Figure 1 shows a snapshot of aMUSE program running
under one of our prototype interpreters. This tool, which allows
the user to interactively “edit” a spectrogram, would be difficult
to achieve in existing programming languages. We have built
other tools using prototypeMUSE interpreters, including a gen-
eral transcription tool, a tool to overlay and compare spectral
slices, and one to interactively examine the residual of an LPC
analysis.

In this paper, we will first outline some of the unique needs of
speech tools and why we feel these needs are not fulfilled by ex-
isting languages. Next we describe the semantics of theMUSE

language: the rules that an interpreter will follow when execut-
ing a MUSE program. Finally, we describe our latest prototype
interpreter, currently implemented in Python [8], which is able
to execute a subset ofMUSE.

2. YET ANOTHER LANGUAGE

One might think that with all the languages already available to
the speech researcher, adding another only exacerbates the sit-
uation. We feel this is necessary because the particular needs
of speech tools and systems are difficult to meet using existing
systems and scripting languages. First, while interactive tools
are crucial to gaining insight or brainstorming for new ideas,
they are known to be difficult to build [6]. One must learn about
“event-driven” programming, interface toolkits, a systems pro-
gramming language such as C or C++, computation on demand
or lazy evaluation, and pipelining and threads to ensure imme-
diate response for the GUI. For example, while it should be
possible to interact directly with a ten minute long utterance,
many tools have difficulty with this task.

Second, we feel it is crucial that all functionality now offered
piecemeal in a few dozen tools and languages should be avail-
able within a single cohesive framework. The difficulty of inte-
grating the functionality of two or more tools, at present, greatly
limits the types of experiments we are able to conduct.

Third, a common mode of research is the “tweak-and-rerun”
model. For example, in order to study the impact of the search
pruning threshold on recognition accuracy, we would run our
recognizer several times, at different thresholds. Because this



Figure 1: A MUSE tool which allows a user to edit a zoomed-in spectrogram by changing the alignment of the individual frames of the FFT used to
compute the short-time Fourier transform. As the user moves a time mark overlayed into the waveform view, the spectrogram underneath is updated
in real-time. In this image, the frames were originally spaced every 5 ms, and the user has edited the left-portion of the vowel so that the frames are
pitch synchronous. The scroll bar allows the user to scroll through the entire utterance, while the scale just below it allows the user to vary the time
scale of the display.

sequence of computations share a common front end, pre-
caching (and saving “on disk”) all computations up to the search
would save a lot of time. In many systems this is a difficult pro-
cess often left to the user, which can lead to disaster should the
user forget what is cached and what is not. The nature of our
computation is such that, from one run to the next, much re-
computation is unnecessary, and our tools should help us take
advantage of that property.

Finally, speech tools and systems often require massive
amounts of highly parallelizable computation for training or
testing across a set of utterances, yet systems for utilizing dis-
tributed resources are not generally available or easy to learn.
Most research groups have developed an “in-house” model of
parallel computation, or lacking such a model, they require re-
searchers to manually divide up and statically distribute their
computation.

These four areas — managing interactivity, integration, support
for general caching, and distributed computation — are crucial
for speech tools, yet are difficult to accommodate with exist-
ing languages and tools. WithMUSE we directly address these
issues.

3. LANGUAGE DESIGN

Figure 2 shows an exampleMUSE program illustrating some
of the unique properties ofMUSE. MUSE is adeclarativelan-
guage, allowing the programmer to specify functionalrelations
that should hold among variables, without worrying about the
details of how the relations will be computed. There is no tem-
poral order in aMUSE program: variables may be used before
they are created; they do not need to be previously declared; and
permuting the statements in aMUSE program will not change
what the program means2. Variables, which are used to refer to
intermediate results (such aswav andtscale in Figure 2), can
only be assigned one value per scope. For example, one cannot

2This is true as long as the permutation obeys the scoping in the
program.

include botha=4 anda=10 in the same scope becauseMUSE

would not know which value ofa to use when it is referenced.
A M USE interpreter keeps track of the “types” of each variable
at run-time and will signal an error if there is a mismatch.

MUSE syntax is intentionally kept simple so that it is easy to
learn. The basic statement assigns an expression to a vari-
able name, where the expression may be a constant value, such
as the string “hello” or the float 3.14, or the result of apply-
ing a function to other expressions. Expressions may be arbi-
trarily embedded, such as the application ofimarks in Fig-
ure 2. If-statements allow alternation to be included in the pro-
gram, depending on the run-time boolean value of a conditional
expression.

Users may define their own function abstractions, which are
treated as first-class values that may be stored in variable
names, passed as arguments, and returned as results. Func-
tions are statically scoped, and each function application creates
a fresh scope. These properties were inspired by the Scheme
language [1].

We refer toMUSE as a scripting language because the syntax is
simple, variables may be used without prior declaration, high
level functions and data types are available, and most of the
“real” computation will occur in built-ins written in a faster lan-
guage (e.g., computing a spectrogram image from a structure
representing a spectrum).

3.1. Execution

BecauseMUSE is a declarative language,MUSE interpreters
have a high degree of freedom when executing a program. This
source of freedom also means aMUSE interpreter must do much
more work than interpreters for other languages. AMUSE pro-
gram is first parsed, and all data dependencies are recorded. Ex-
pressions may then be executed according to the order required
by dependencies. The interpreter might choose to execute com-
putations in parallel, either on different computers, or locally
on multiple processors, or serially in some order. Intermediate
results may be cached, either on disk or in core memory dis-



// Pixels per second.
tscale = 350

wav = waveform(file="sa1-b-faks0.wav")
wimg = iwaveform(wav, tscale)

// Overlay marks onto waveform image when
// zoomed in enough.
if tscale > 300

wmimg = ioverlay(wimg, imarks(marks, tscale))
else

wmimg = wimg

// The scrolled image.
simg = iextract(wmimg, s.view, 0,

width="20c",
height=wmimg.height)

r = root()
w = window(r, simg)
s = scrollbar(r, w, wmimg)

pack(r)
pack(w, s)

Figure 2: A fragment of aMUSE program to display a scrollable
waveform, loaded from the file-system, with time marks overlaid.
High-level functions, likeiwaveform , imarks andioverlay , al-
low the programmer to obtain images of waveforms and marks, and
overlay them, without being concerned with how to allocate the space
to store the images (which could be very large), or when to com-
pute various portions of the image. When the view of the scroll bar,
s.view , changes (because the user of the tool has scrolled),MUSE
will carefully recompute only the affected objects. Because aMUSE
program has no temporal order, variables may be referred to “before”
they are created (for example,s.view ).

tributed among many machines, and then later reused in order
to avoid redundant computation. Large, time-consuming com-
putations might be divided into smaller pieces, when possible.

These are examples of the details under the auspices of the
MUSE interpreter, about which the programmer in general does
not need to worry. In any case, the final outcome of the com-
putation is guaranteed to be the same, although intermediate
changes in reaching that outcome may differ. In general,MUSE

interpreters may base their choices on tradeoffs and availabil-
ity of computational and storage resources, in addition to the
likelihood that a given value may be needed again in the future.
For example, it may not be worth caching waveform images to
disk, as they consume space and can be redrawn quickly. In
contrast, it may be worth caching the accuracy a particular rec-
ognizer configuration achieves on a certain set of utterances, as
this is a single floating point number which would require much
computation to regenerate. FutureMUSE interpreters will likely
offer options to allow the programmer to control these choices
to some extent.

In an interactive tool, with a scroll bar,MUSE might not cache
images which can be redrawn quickly, such as a linear axis
view, but might cache more costly images, such as a spectro-
gram view. Also, parts of an image may be cached, while other
parts are computed. In all cases,MUSE will only compute those
parts of a data type that are actually needed by the user at run-
time. This is what makes it possible to manipulate very large,
even infinite, structures.

3.2. Change

One of the unique elements ofMUSE is its model ofchange. At
any time while aMUSE program is running, it is possible for the
value of a variable to change to a new value. Such change typi-
cally originates from a graphical widget with which the user has
just interacted (clicking on a button, sliding a scroll bar). When

this happens,MUSEcarefully recomputes those variables whose
values depend directly or indirectly on the changed variable.

This explicit model for handling change is used to implement
all forms of user interactivity. For example, when the user drags
a time mark, they are changing the time value associated with
the mark. If in the program the time value of that particular
mark was used as the input to a spectral slice computation, the
computation will be redone as the mark moves, as frequently as
is possible given the power of the computer and the complex-
ity of the computation. The propagation of changed values is
handled by the interpreter; the programmer does not need to do
anything except express how actions by the user (dragging the
mouse, clicking a button or a key) translate into changes in the
MUSE program.

The granularity of a change varies with the data type. For an
integer or float variable, the value either changed or did not; no
further information is recorded. For images, however, change
may be contained to within a rectangular region, which allows
MUSE to recompute only the affected area. This is what makes
it possible for the user to receive immediate feedback with the
editable spectrogram tool shown in Figure 1; computing the en-
tire spectrogram image every time a mark moves would be pro-
hibitive for interaction.

Handling changes introduces substantial complexity into a
MUSE interpreter, especially when the changes propagate
through if-statements and function applications. For example,
the programmer might use an if-statement to choose which set
of models to use during recognition:

if fast
<use fast models>

else
<use slow accurate models>

If the fast variable changes while the tool is running, all com-
putations which had occurred on one branch of the if will have
to be revoked, and new computations from the other branch will
then be performed. Similar difficulties arise with the application
of user-defined functions, and with propagating change when
the impact is compute-intensive.

This element ofMUSE greatly simplifies the creation of inter-
active tools. Currently, the only source of change are graphical
widgets, such as scroll bars, scales and buttons. We are actively
designing more general expressions withinMUSE which will
allow the programmer to initiate their own changes at specified
instants of time.

3.3. Data types

One of the most important aspects of a language is what built-in
types are supported, and what facilities are offered for the user
to create new types. WhileMUSE will eventually have many
data types to support speech based tools, this aspect of the lan-
guage has not yet been fully designed. Data types inMUSE

are particularly complex as they interact heavily withMUSE’s
declarative style and model of change. For example, just as the
programmer does not know when a particular function might be
executed, the programmer will also not know whether a data ob-
ject is actually stored, is being computed on demand, or some-
thing in-between. For example, a common iteration technique
in the Python scripting language is:

for i in range(0, 1000):
<do something>

Therange function actually allocates and creates a list of 1000
integers. We would like the analogous expression inMUSE to



"sa1-b-faks0.wav"

wav

20c

simg

wimg

250

tscale

wmimg

s

marks

w

r

Figure 3: Graph produced when the prototypeMUSE interpreter exe-
cutes the program fragment in Figure 2. Themarks node is dashed
because it is referenced but not defined. Blank nodes are temporary
nodes introduced by the interpreter to reduce compound expressions.
Execution of the program proceeds according to the dependencies be-
tween nodes in the graph.

allow for the interpreter to choose not to actually compute and
pre-cache the entire list, but rather generate its elements as they
are needed.

One data type which we have thoroughly explored is the im-
age data type. An image is a two-dimensional grid of pixels of
a certain width and height (which may be infinite: a horizon-
tal axis image extends from�1 to +1). Images are created
from built-in functions:iwaveform produces an image from
a waveform,iaxis produces a linear axis image, etc. Images
may be overlaid, joined and spliced, and then displayed into
windows. For example, one way to offer a scrollable image to
the user is to splice the appropriate sub-image out of a larger
image according to a “view” controlled by one or two scroll
bars. MUSE will include facilities allowing the programmer to
create their own data-types, such as tuples and structures.

4. INTERPRETER

We have a prototypeMUSE interpreter implemented in
Python [8], using an interface to the Tk toolkit for graphical
widgets. This version implements many aspects of theMUSE

language, including basic execution and user-defined abstract
functions, but excludes distributed computation, if-statements
and general caching. We have added numerous builtin functions
appropriate for speech analysis, including functions to com-
pute and display preemphasized waveforms, spectrograms with
different analysis windows, transcriptions, spectral slices, LPC
analyses, linear axes, and time marks. Built-in data-types in-
clude images, waveforms, marks and spectra, strings, integers,
booleans and floats.

At runtime, the interpreter parses the program and translates it
into an equivalent graph. Compound expressions are broken
down into individual steps, introducing temporary nodes into
the graph. In the graph, a node is created for every variable
in the program, and edges link two nodes when there is a de-
pendency between the corresponding variables. The graph is
then analyzed, and nodes will be computed in order according
to their dependencies. When an abstract function is applied, the
effect is to duplicate the sub-graph which represents the body of
the function. In this way, what begins as a small program in text
can denote a large dynamic graph at run-time. Figure 3 shows

the run-time graph created by theMUSE fragment in Figure 2.

5. DISCUSSION

MUSE offers unique ways to combine existing functionality.
The language is simple, so that it is still approachable and easy
to learn, but complex enough to support diverse functionality.
The declarative model leaves many computational details to the
interpreter, freeing the programmer from having to deal with
them. This includes providing interactivity through a model of
time-sensitive change, caching and reusing prior computations,
and scheduling computation to take advantage of distributed re-
sources. This frees the programmer from worrying about details
of interaction even within a compute-intensive tool.

Of all existing tools and languages, we feelMUSE is most sim-
ilar to SAPPHIRE[4]. However, unlikeSAPPHIRE, which relies
on Tcl as its scripting language,MUSE is a new language with
very different rules of execution. MUSEcan handle fine-grained
changes, such as the impact of moving a single time-mark, and
relies to a greater extent on lazy evaluation so that if a portion
of an image is not needed, it will not be computed. Finally,
SAPPHIREis not really “gentle sloped”: extending it requires
writing C code and becoming quite familiar withSAPPHIRE’s
internal design. Instead,MUSE is designed to be expressive
enough so that such functionality could generally be directly ex-
pressed within aMUSE program, and failing that, built-in func-
tions could be added in a systems language without detailed
knowledge of the interpreter’s design.

MUSE is under active development and is quite far from com-
pletion. It is our top priority to first finish designing the syntax
and semantics of the language, and then to build an efficient
interpreter which is able to executeMUSE programs. We are ac-
tively designing data abstraction and a general model for change
for the language. We plan to buildMUSEinterpreters which sup-
port distributed computation and short- and long-term caching,
as well as supporting change in the context of if-statements and
function application.

6. REFERENCES
[1] H. Abelson, G. J. Sussman, and J. Sussman.The Structure and

Interpretation of Computer Programs. The MIT Press, Cam-
bridge, Massachusetts, 1996. Second Edition.

[2] The Hidden Markov Model Tool Kit,
http://www.entropic.com/htk/htk.html.

[3] ESPS/Waves, http://www.entropic.com/products.html.
[4] L. Hetherington and M. McCandless. SAPPHIRE: an extensible

speech analysis and recognition tool based on tcl/tk. InProceed-
ings of the International Conference on Spoken Language Pro-
cessing, 1996.

[5] G. E. Kopec. The signal representation language SRL.IEEE
Transactions on Acoustics, Speech, and Signal Processing,
ASSP-33(4):921–932, August 1985.

[6] B. A. Myers. State of the art in user interface software tools.
Technical Report CS-92-114, CMU, February 1992.

[7] J. K. Ousterhout.Tcl and the Tk Toolkit. Addison-Wesley, Read-
ing, MA, 1994.

[8] The Python Language, http://www.python.org.
[9] S. Sutton, J. de Veilliers, J. Schalkwyk, M. Fanty, D. Novick,

and R. Cole. Technical specification of the CSLU toolkit. Tech.
Report No. CSLU-013-96, Center for Spoken Language Un-
derstanding, Dept. of Computer Science and Engineering, Ore-
gon Graduate Institue of Science and Technology, Portland, OR,
1996. Alsohttp://www.cse.ogi.edu/CSLU/toolkit/toolkit.html.

[10] V. W. Zue, D. S. Cyphers, R. H. Kassel, D. H. Kaufman, H. C.
Leung, M. Randolph, S. Seneff, J. E. Unverferth III, and T. Wil-
son. The development of the MIT lisp-machine based speech
research workstation. InProc. IEEE Int. Conf. Acoust., Speech,
Signal Processing, pages 329–332, Tokyo, Apr. 1986.


