
SPEECH TECHNOLOGY INTEGRATION AND RESEARCH PLATFORM: A SYSTEM STUDY

Qiru Zhou, Chin-Hui Lee, Wu Chou and Andrew Pargellis

Multimedia Communication Research Laboratory
Bell Laboratories, Lucent Technologies

600-700 Mountain Avenue
Murray Hill, NJ 07974, USA

{qzhou, chl, wuchou, anp}@research.bell-labs.com

ABSTRACT

We present a generic speech technology integration platform
for application development and research across different
domains. The goal of the design is two-fold: On the
application development side, the system provides an intuitive
developer’s interface defined by a high level application
definition language and a set of convenient speech application
building tools. It allows a novice developer to rapidly deploy
and modify a spoken language dialogue application. On the
system research and development side, the system uses a
thin, ‘broker’ layer to separate the system application
programming interface from the service provider interface. It
makes the system easy to incorporate new technologies and
new functional components. We also use a domain
independent acoustic model set to cover US English phones
for general speech applications. The system grammar and
lexicon engine creates grammars and lexicon dictionaries on
the fly to enable a practically unrestricted vocabulary for many
recognition and synthesis applications.

1. INTRODUCTION

In recent years, high performance speech processing
technologies, such as automatic speech recognition (ASR) and
text-to-speech synthesis (TTS)[4], are becoming available for
many applications, thanks to many years of research and the
exponentially increasing performance-to-price ratio of general
computing power. Now a software based speech application
sub-system may reside in a commonly available general
purpose workstation or personal computer with real-time
speech application capability, without any special-purpose
hardware support.

While there is a continuous progress in speech processing core
technologies (such as speech recognition, speech synthesis,
natural language understanding, and dialogue processing[1], [3],

[5]), it is still nontrivial to design a speech-enabled prototype
system for experimenting and studying a wide range of real
world applications. For most of the available speech
processing platforms, a team of experts on software, speech
technologies, audio and telephony interface is usually needed
to develop a domain-specific speech application. This
shortcoming severely limits the deployment of speech enabled
applications. On the other hand for the research side, we need
a generic, flexible speech technology integration platform to
study research and practical issues in real-world speech
processing problems, such as speech recognition robustness,
speech synthesis naturalness in discourse, human-machine
spoken dialogue design, etc.

To address these issues, we propose a technology integration
platform with the following set of system design goals:
• Enable rapid application development
• Create a research tool set to study human-machine

speech interface and spoken dialogue design
• Integrate high performance speech processing
• Interface to real world applications, such as transaction

control and information access
• Applications be both domain dependent and independent
• Scaleable multi-channel processing
• Open architecture to allow third party system component

to integrate into the system
• Reusable component design
• Inter-operable across heterogeneous systems

2. SYSTEM ARCHITECTURE

From the system design goals, we conclude that the platform
should be based on a distributed, client-server architecture.
This not only makes the system scaleable and easy to add new
function components, but also makes it possible for efficient
application development and integration. Figure 1 illustrates
the functional block diagram of the system.

Our current system comprises of the following components:

Server side:
• ASR server: The real-time speech recognition engine.
• TTS server: The text-to-speech synthesis engine. It also

provides a lexicon interface to output phone-based lexical
transcriptions for a given vocabulary on the fly for speech
recognition task composition.

• Audio server: The audio server provides fine granularity
control on speech audio I/O streams for advanced speech
processing functions, including echo cancellation, barge-
in, etc.

• Database server: The application databases and database
management tools.

• GDC server: The grammar/dictionary factory for
recognition task composition[9].

• Telephone/audio interface: The full duplex speech audio
interface. The system audio interface includes desktop
audio interface and telephony interface.

Interface and broker layer:
• SPI: The service provider’s interface. It is the system

server side interface to connect server components.
• Resource manager/proxy server: The system resource

management layer connects client service requests to
proper servers and manages the system resource
distribution.

• API: The system application programming interface for
speech technology research and advanced application
prototyping.

Client side:
• Application (client): A speech dialogue application

defined by the system application definition language
(ADL).

• Dialogue/application manager: The system dialogue
manager that interprets the application actions described
by a ADL script and request system services and actions.
Each of the client applications creates a dialogue
manager instance to handle its own needs.

The Server SPI (Service Provider Interface)

Resource Manager/Proxy Server

ASR
Server

TTS
Server

Audio
Server

GDC
Server

Telephon/Audio
Interface

Database
Server

Dialogue/
Application

Manager

The Client API (Application Programming Interface)

Dialogue/
Application

Manager

Dialogue/
Application

Manager
.

Application
(Client)

Application
(Client)

Application
(Client).

Figure 1. Speech Technology Integration Platform

In order to make the system inter-operable across
heterogeneous computer systems, we designed a simple server
SPI protocol on top of the TCP/IP protocol for the system
server components which is machine independent (i. e., the
servers talk to any one who communicates based on the
system SPI protocol). Since the middle layer between
applications and servers are usually thin, we use a high level
interpreted language (Perl, in our implementation) to write the
resource management/proxy middle layer and the application
dialogue engine. This approach make it easy for rapid system
prototyping and to be portable to a large range of computer
systems. A new component may be integrated to the system by
just implementing the TCP/IP SPI protocol and adding new
API commands without rebuilding the entire system.

3. SPEECH RECOGNITION SERVER

The real-time speech recognition engine integrated into the
system is a server developed at Bell Labs. The main features
of the recognizer are:

1. Runtime configurable: A client may initialize a private
instance of the recognition engine by using the ASR
server initialization/configuration commands to load
acoustic models, language models, and recognition
parameters to configure the ASR server as needed. We
also used the system to construct applications on
languages other than English, such as Spanish, Mandarin
Chinese, etc.

2. High accuracy speech decoder: The ASR engine uses a
set of context dependent cross-word phone models
trained on a corpus of general US English phrases as the
default[8] model set. It covers common English sounds
with high resolution. An optimal N-best algorithm[6] is
used to produce multiple recognition hypotheses. The
engine may be configured with the Bell Labs WAVE
decoder[2] to save up to 95% of memory usage for large
vocabulary recognition tasks. Probabilistic n-gram and
deterministic finite state grammar language models may
be used for most large vocabulary applications.

3. Unrestricted vocabulary: We use the TTS server – the
Bell Labs TTS system[4] to transcribe recognition task
vocabulary on the fly to compose a dictionary. Current
test results shows that this transcription system produces
reasonable word lexicons for most of our experiments.
For best results, fine tuning of some words, such as
adding alternative pronunciations, may be needed. If the
grammatical specification is also given, a grammar
compiler[9] allows composition of the required
recognition grammar on the fly. These features enable the
system to be used directly in applications where the
language constraints can not be pre-built, such as speech
enabled web browsing[11] in which the web pages are not
seen by the recognizer before runtime.

4. Recognition task caching: multiple acoustic model sets
and language models may be pre-loaded for rapid run-
time recognition context switching. The model set may be
shared among tasks to save memory. This feature is
useful for spoken dialogue transaction systems where
multiple sub-tasks are repeatedly used and fast task
switching is necessary.

5. Robust speech recognition: various channel equalization
and smoothing techniques are used to make the decoding
more robust in noisy environment.

Our standard English sub-word model set is comprised of
1117 right context dependent cross-word phone units[8]. The
model set was trained on a telephone speech corpus of
phonetically balanced English phrases using a minimum error
discriminative training algorithm[8]. The feature vector
dimension is 39, which includes 12 LPC-derived cepstral
coefficients, 12 delta LPC cepstral coefficients, 12 delta-delta
LPC cepstral coefficients, a normalized log energy element
and its time derivatives.

Since the system is designed to be used under a wide signal
conditions, the ASR server has the following options to
perform channel equalization:

1. Real-time signal bias removal[10] (RT-SBR): The ASR
server creates initial, RT-SBR code books on the fly
based on a given acoustic model set, then adapts the code
book parameters to speech channel environment.

2. Real-time cepstral mean subtraction (RT-CMS): This is a
CMS algorithm[10] which estimates the cepstral mean
vector by using a stochastic approximation method.

3. Look-ahead sliding window signal smoothing: This
algorithm reduces signal burst noise and spikes by
averaging the signal feature vector in a look-ahead time
window. This simple technique is especially useful for
short utterances and it effectively reduces ASR error rate
by 50% on an American company name recognition task
(about 7000 company names).

4. DC bias removal: This adaptive algorithm removes DC
biases introduced by some electrode microphones on
certain system audio inputs.

We found items 3 and 4 are necessary for desktop open
microphone input under noisy environments.

4. APPLICATION DEFINITION LANGUAGE

Most of the spoken dialogue tasks can be described as finite
state machines of dialogue states and transitions between
states. In each of the dialogue states, the system and the user
conduct a specific dialogue. Based on the dialogue output, the
system performs a specific semantic action or actions (such as
database search or update), then transits to the next state. If a
terminal state is reached, the application transaction is
completed. Exceptional termination states have to be designed
to handle system errors, user termination, dialogue interrupts,
voice repair, system reprompts, etc.

An ADL state is defined with the following information:

state: {
$StateName;
$ttsStrings;
$sndFiles;
$recTask;
%recMappingArray;
@nextStateList;
&actionFuncs;
&amInterpreter;

}

where each state is identified by its name string. A terminal
state has a process termination function as its action function.
If we want the computer to say something at this dialogue
state, we may concatenate text strings to a variable
$ttsStrings, or specify sound files in the $sndFiles list to play
back. $recTask specifies the ASR task to let the computer
start speech recognition. We use an associative array
%recMappingArray to remap the recognition result strings to
the key word or key concept for this node. @nextStateList
gives the destination state list from this node. An application
may define a list of action functions if entering this state.
Finally, we start the application dialogue engine,
&amInterpreter, to process this state.

One of the advantages of using an interpreter engine to control
the dialogue is that the application may modify the state
contents at run time. This is useful for commercial transaction
systems where a customer may has his/her own profile to
specify personal processing needs.

The dialogue interpreter engine takes the information of a
state and processes it when the transaction enters the state.

5. EXAMPLE: SPOKEN BANKING DIALOGUE

As an illustration, we present a prototype banking system
(Figure 2) as an example.

This application demonstrates a simple banking system. A
customer may access this system if there is a user profile in
the database for access and the user passes the authentication.
There are three services available in the system: get account
balance, transfer funds, and list transactions. If transfer funds
is selected, we need an extra confirmation step before
processing the transfer.

This banking application is defined by using the following
states:

Start: initialization, and load shared data.
Login: ask user id, identify the user and get the user profile.
Authentication: check user pin/password.
ServiceSelect: select a service.
GetBalance: check account balance.
TransferFunds: transfer money against user balance.
ListTransactions: list user transaction history.
AccessAcount: access account database.
ConfirmTransfer: verify transfer process.
ProcessTransaction: apply transfer transaction.
AnotherTransaction: prompts if the user wants another
 transaction.
End/CustomerService: terminal states.

New user log in

User authentication User
database

Passed?

Get balance
Transfer

funds
List

transactions

Another
Transaction

?

Select a service

User
account

Access user account

transfer funds?

transaction
confirmed?

Process transaction

End

Yes

Yes

Yes

No

No

No

Yes

 >=3 times?

No

No

Cust. service

Yes

Figure 2. A bank system example

The following shows an ADL specification in Perl script for
the ServiceSelect state. It demonstrates the ease of
constructing a dialogue session with a high level script
language like Perl.

ServiceSelect:{
 $StateName =” ServiceSelect”;
 $ttsStrings ="Say either 'balance', \
 'transfer fund’, or ‘list \

transactions’\n";
 $recTask = "gr_bank1.dat";
 %recMappingArray ={

“balance”, “balance”,
“transfer fund”, “transfer”,
“list transactions”, “list”,
};

 @nextStateList = (“GetBalance”,
“TransferFunds”,
“ListTransactions”);

 &amInterpreter;
}

6. CONCLUSION

By integrating major speech processing components (ASR and
TTS, etc.) into a network-based platform, it gives application
builders a new level of convenience and flexibility to create
advanced speech processing applications. A high level
application definition language enables researchers and
developers to quickly prototype a speech application and make
it easy to modify.
This system has been successfully tested on various
heterogeneous distributed systems to build speech
applications such as telephony network intelligent agent, voice
user interface, speech dialogue banking transaction, speech
enabled web browsing[11], spoken language command control,
etc.

7. ACKNOWLEDGMENTS

This work was based on years of collaborative research and
development in Bell Labs and AT&T/Lucent speech product
development units. In particular, the authors would like to
thank E. Pinson, R. Ritenour, B. Stern of AT&T Research,

and M. Brown, F. Soong, M. Baldwin, G. Erhart, A. Saad, R.
Sproat of Lucent Bell Labs, for their invaluable contributions
and fruitful discussions.

8. REFERENCES.

[1] Sutton, S., Novick, D., Cole, R., and Fanty, M.,
“Building spoken-dialogue systems,” Proc. ICSLP-96,
Philadelphia, Oct. 1996.

[2] Burhke, E., Chou, W., and Zhou, Q., “A Wave Decoder
for Continuous Speech Recognition,” Proc. ICSLP-96,
Philadelphia, Oct. 1996.

[3] Colton, D. et. al., “A Laboratory Course for Designing
and Testing Spoken Dialogue Systems,” Proc. ICASSP-
96, Atlanta, May 1996.

[4] Sproat, R. W., and Olive J. P., “Text-to-Speech
Synthesis,” AT&T Technical Journal 74(2), 35-44, 1995.

[5] Goddeau, D. et. al., “GALAXY: A Human-Language
Interface to On-line Travel Information,” Proc. ICSLP-
94, Yokohama, Sept. 1994.

[6] Chou, W. et. al., "An Algorithm of High Resolution and
Efficient Multiple String Hypothesization for Continuous
Speech Recognition Using Inter-Word Models," Proc.
ICASSP-94, 1994.

[7] Lee, C-H. et. al., “Improved Acoustic Modeling for
Large Vocabulary Continuous Speech Recognition,”
Compute Speech and Language 6, 103-127, 1992.

[8] Lee, C-H. et. al., “A Study on Task-Independent Subword
Selection and Modeling for Speech Recognition,” Proc.
ICSLP-96, Philadelphia, Oct. 1996.

[9] Brown, M. K. and Wilpon, J. G., “A Grammar Compiler
for Connected Speech Recognition,” IEEE Trans. ASSP,
Vol. 39, No. 1, 1991.

[10] Rahim, M. et. al., “Signal Conditioning Techniques for
Robust Speech Recognition,” IEEE Signal Processing
Letters, Vol. 3, No. 4, 1996.

[11] Jayant, N. “Human Machine Interaction by Voice and
Gesture,” ICASSP-97, Munich, April 1997.

