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ABSTRACT

Letter-to-sound (LTS) conversion is important for both
text-to-speech (TTS) and automatic speech recognition
(ASR). In this paper we discuss some improvements we
have made on our trainable LTS converter. We use a clas-
sification and regression tree (CART) to automatically
configure the most salient phonological rules needed for
the LTS conversion. We address problems in growing
multiple trees and use of phonotactic information for bet-
ter generalization. The experiments were carried on both
the NETTALK database and the CMU dictionary. With
improved techniques, the conversion error rate at the pho-
neme level and word level was reduced by 15% and 20%
respectively. For both tasks, the phoneme conversion error
rate was reduced to about 8%.

1. INTRODUCTION

Letter-to-sound (LTS) conversion plays a very important
role in both text-to-speech (TTS) and automatic speech
recognition (ASR). LTS module is necessary for any TTS
system in order to convert every word into a sequence of
phonemes, as a specific word may not be in the system
dictionary, no matter how big the dictionary is. For the
same reason, ASR systems also needs LTS, as new words
have to be added on the fly, either by the user or through
interface from speech-aware applications.

The traditional rule-based LTS system requires tedious
effort to improve its quality and a different language often
requires a completely new set of rules. A trainable LTS
converter is attractive since its performance can be im-
proved by learning from existing dictionaries and it can be
easily configured for different languages using available
dictionaries.

Trainable LTS converters have been studied by a number
of people [1-5]. Most of them used statistic approaches
such as neural networks [3,4], Hidden Markov Models
(HMM) [5] or the classification and regression tree
(CART) [1,2]. Among these existing systems, CART-
based LTS generated one of the most accurate systems.

In this paper, we extend the typical CART approach to
generate more accurate LTS conversion. It is observed
that the use of improved tree growing procedure, deleted-
interpolation based smoothing, phonotactic information
and multiple trees can substantially improve the perform-
ance for predicting unseen data. We have achieved overall
error reduction of 15% at phoneme level and 20% at word
level. On both NETTALK database and CMU dictionary
tasks, the phoneme conversion error rate has been reduced
to about 8%.

2. EXPERIMENTAL DATABASE

All of experiments were carried on two databases. The
first one is the NETTALK [3], which has hand-labeled
alignment between letter and phoneme transcriptions. The
second one is the CMU dictionary [8], which does not
have any alignment information.

The NETTALK database consists of 19,940 entries, we
randomly selected 14,955 entries as training set and re-
served the rest 4,951 words for testing. Notice that those
4,951 words correspond to 4985 entries in the database
because of multiple pronunciations. The hand-labeled
alignments were used directly to train the CART for LTS
conversion.

The CMU dictionary has more than 100,000 words, we
selected the top 60,000 words based on the unigram
trained from North American Business News for this ex-
periment. Among them, 52,415 entries were used for
training and 9,719 words were reserved for testing. Due to
multiple pronunciations, those 9,719 words have 10,520
entries in the dictionary. Note that some flap rules were
applied to the dictionary to change some “D” and “T”
phonemes in certain contexts to “DX”. Due to lack of
alignment information, we needed to run dynamic pro-
gramming to align each letter to the corresponding pho-
neme before training the LTS CART.

We tested both word and phoneme level conversion accu-
racy for all of our experiments. For words with multiple
pronunciations in the database, hitting one of the pronun-
ciations was counted as correct in computing word accu-
racy. However, when phoneme accuracy was calculated,



all the pronunciations were used for comparison. There
was no extra effort to match the multiple pronunciations
against the LTS output candidates. Therefore, the pho-
neme accuracy reported here could be slightly improved
with careful handling of multiple pronunciation entries.
Note that all the “NULL” phonemes generated by LTS
were always removed in computing the accuracy.

3. BASELINE

The CART [6] has been widely used in speech recognition
[1,2,9] and language modeling [10] because of its flexi-
bility and generalization capability. It is a top-down classi-
fication approach. The basic component includes a set of
YES-NO questions and a procedure to select the best
question at each node to grow the tree from the root.

The basic YES-NO question for LTS conversion looks
like “Is the second right letter ‘p’?” or “Is the first left
output phoneme ‘AY’?” The questions for letters could be
on either left or right side. For phones, we only used
questions on left side for simplicity. The range of question
positions should be long enough to cover the long-distance
phonological variations. In our empirical experiment, we
found that the 11-letter window (5 for left letter context
and 5 for right letter context) and 3-phoneme window for
left phoneme context is generally sufficient.

A primitive set of questions would be the set of all the
singleton questions about each letter or phoneme identity.
When growing the tree, we simply chose the question that
has the best entropy reduction at each node. We observed
that if we allow the node to have complex question which
is a combination of primitive questions, the depth of the
tree will be greatly reduced and the performance will be
improved. For example, complex question “Is the second
left letter ‘t’ and the first left letter ‘i’ and the first right
letter ‘n’?” can capture ‘0’ in common suffix “tion” and
convert it to the right phoneme. Complex questions can
also alleviate data fragment problem caused by greedy
nature of the CART algorithm. Our way of finding such
complex questions was similar to the ones used in [9,10].

We built the baseline system using the above techniques
and the error rates are listed in Table 1.

Database Phoneme | Word
CMU Dict 9.7% 35.0%
NETTALK | 9.5% 42.3%

Table 1. LTS baseline

4. DISTANCE-WEIGHTED ENTROPY RE-
DUCTION

It has been shown [2] that the question set consisting of
only pure singleton questions will hurt generalization be-
cause of potential training data overfitting even with com-
plex questions as mentioned in section 3. It was verified

with our experiments that category questions would yield
a tree for better generalization.

Category questions can be formed in both letter and phone
domain with the help of some common linguistic knowl-
edge. For example, the most often used set includes the
letter or phone clusters for vowels, consonants, nasals,
liquids, fricatives etc. Adding this new category question
set into our singleton question set, we obtained slightly
improved results in Table 2. It was suggested that those
category questioned can be attained automatically by
clustering training samples [10]. Unfortunately, our at-
tempt did not lead to any improvement.

Database Phoneme | Word
CMU Dict. 9.3% 33.0%
NETTALK 9.3% 41.3%

Table 2. LTS using category question set

One important finding in growing the decision tree was
that the context distance plays a major role in the overall
quality. It is very important to weight the entropy reduc-
tion according to the distance (either letter or phoneme) to
avoid over-generalization. With limited training samples,
using distant letter and/or phoneme question can result in
simpler tree structure. But on the other hand, it might
cause over-training. The generalization capability usually
gets better when entropy reduction is discounted by its
distance from the center. Intuitively, it forces the tree to
look at the “nearby” context more carefully before the
“far-away” contexts. The weights for entropy reduction
were determined by empirical methods. The results in
Table 3 were obtained by using category question set and
distance-weighted entropy reduction.

Database Phoneme | Word
CMU Dict. 8.7% 30.3%
NETTALK 9.1% 39.8%

Table 3. LTS using category question set and
distance-weighted entropy reduction

5. DELETED-INTERPOLATION BASED
SMOOTHING

Each leaf of the LTS CART has a probability distribution
for letter to phoneme mapping. The deeper the tree, the
sharper the distribution is. However, when the distribution
is too sharp, one particulate phoneme will usually domi-
nate, i.e., all the other phonemes will get near O probabil-
ity. This will make LTS less robust and make it unrecov-
erable from a single mistake. There are two types of solu-
tion for the over-training problem: pruning or smoothing.

Pruning will control the depth of the tree. For example,
certain criteria have to be met for a node to be split. Typi-
cally it requires a minimum number of counts and a mini-
mum entropy reduction. Of course, a tree can also be



grown very deeply and then pruned back to the right size.
Cross-validation generally are employed for CART prun-
ing. The problem of pruning is that classification resolu-
tion is typically sacrificed.

Smoothing, on the other hand, does not change the struc-
ture of the tree. It will smooth the distribution at the leaves
to avoid the over-fitting but also maintain the high classi-
fication resolution. For example, the leaf distribution can
be interpolated with the distributions of its ancestor nodes.
In addition, smoothing can be combined with pruning to-
gether.

Deleted-interpolation [7] has been widely used for com-
puting the interpolation weights of maximum likelihood
based statistical models. For LTS CART smoothing, we
can partition the training data into two sets (or more), tie
the leaf nodes into classes and use deleted-interpolation
technique to compute the interpolation weights for each
class. The class can be based on counts of leaf distribu-
tions, entropy of the leaf distributions, letter identity, pho-
neme identity or any combination of the above.

In our experiments, we found that interpolation with a
series of ancestor nodes is better than with only the imme-
diate parent node. There was one specific set of deleted-
interpolation weights for each letter tree. The results show
that it can greatly improve the N-Best coverage without
sacrificing the top-one accuracy. For example, we were
able to reduce the top-10 word error rate from 29.3% to
13.4% for CMU dictionary. The better N-Best coverage
paved the road for combining other type of information
for further performance improvement.

6. PHONEMIC TRIGRAM RESCORING

Even though there were questions on left phonemic con-
text for the CART, we felt that we had not made full use
of the phonotactic information. Statistical model such as
phonemic trigram model, on the other hand, is more pow-
erful on modeling phonotactic information and can pro-
vide probabilistic score for the occurrence of any pho-
neme sequence.

Database Phoneme | Word
CMU Dict. 8.6% 28.2%
NETTALK 8.6% 36.5%

Table 4. LTS using phonemic trigram res-
coring

Similar to speech recognition, we can use the phonemic
trigram in the same way by combining the score from the
LTS CART and phonemic trigram using a “language
weight”. In particular, we used trigram for rescoring of the
N-Best list generated by LTS. The phonemic trigram was
generated from the training samples with backoff
smoothing. The results in Table 4 show the improvement

by combining information from phonemic trigram rescor-
ing.

7. MULTIPLE TREE COMBINATION

By examining the errors produced by LTS converter, we
found that most of the errors were caused by over-
generalization. It indicated that we could potentially im-
prove the performance by partitioning data and building
multiple trees. With different prediction capability, the
errors could be recovered by combining results from mul-
tiple trees.

In a pilot experiment, we evenly partitioned the training
data into two parts and trained two trees respectively.
When we tested the performance of these two trees, we
found that they had a great overlap but also behaved dif-
ferently as each of them has different focus region. Com-
bining them together greatly improved the coverage.

To get a better overall accuracy, we used the tree trained
by all the samples together with two other trees trained by
half of the samples respectively. The leaf distributions of
three trees were interpolated together with equal weights
and then phonemic trigram is used to rescore the N-Best
output lists. Moreover, multiple trees can also be viewed
as another smoothing mechanism. For example, the top-10
word error rate on CMU dictionary was further reduced
from 13.4% to 10.9%. With multiple trees and trigram
rescoring, the results shown in table 5 demonstrated that
our LTS is clearly among one the most accurate ones re-
ported on the same databases so far.

Database Phoneme | Word
CMU Dict. 8.2% 26.9%
NETTALK 8.1% 34.2%

Table 5. LTS using multiple trees and pho-
nemic trigram rescoring

8. SYLLABLE INFORMATION

We have tried to use syllable structure information to im-
prove the conversion accuracy as syllable is a relatively
independent unit. It is likely that the pronunciation of a
syllable will be relatively independent of its contexts. If
we incorporate the syllable boundary into the CART, we
might potentially get better performance.

In the pilot experiment, we assumed that we knew the
syllable boundary by using dictionary with syllable
boundaries predetermined and marked. We then mapped
the boundaries from phoneme domain to letter domain. In
this case, we achieved a moderate performance improve-
ment by asking questions on syllable boundary in tree
generation.

One step further, we used a very simple rule-based syllabi-
fication algorithm to derive syllable boundary for a given



word. We assumed that we knew the correct pronuncia-
tion. This simple syllabification algorithm did make some
errors when compared to dictionary with syllable marks.
Even though we did not always use the correct syllable
boundary information in the CART, it still demonstrated
modest improvement but the gain was smaller compared
to the perfect syllable boundary case.

Finally, we removed all the assumption and had a two-
pass LTS converter. We used the output of the CART
(without syllable information) and the rule-based syllabifi-
cation algorithm to derive the syllable boundaries in the
first pass and then redid LTS in the second pass using the
obtained syllable boundary information. Unfortunately,
the performance improvement became very minor.

Even though we have not achieved significant perform-
ance improvement with syllable structure information so
far, we strongly believe that it contains information that is
not currently used and has great potential to improve the
LTS performance. Further investigation will need to be
done on this subject.

9. ERROR ANALYSIS

After analyzing the errors made by LTS, we can classify
them into a few categories. The first category goes to
proper nouns and foreign words, which are the most diffi-
cult part of the LTS. For example, “Pacino” will be con-
verted fo “P AX S IY N OW ” instead of “P AX CH IY N
OW” because LTS does not know it is a foreign name and
it should convert differently. The second category goes to
generalization errors. There are two types of generaliza-
tion errors. The first one is over-generalization of some
partial letter sequence. For example, word “shier” would
likely be converted to “SH IH R” instead of correct pro-
nunciation “SH AY R” if word “cashier”’(“K AE SH IH R”)
appears in the training data. The other generalization error
is over-generalization for patterns not appearing in the
training data at all. Of course, there is no hard boundary
between the first and second case. The final category is
errors caused by inconsistencies in the transcription of the
dictionary. For example, CMU dictionary transcribes the
ending letter “s” in word “lamos” to “S” (“L AA M OW
$”) but transcribes it in word “alamos” to “Z” (“AE L AX
M OW Z”). Of course, one might argue this type of errors
should be database errors, rather than LTS errors.

To find out what kind of errors the LTS produces, we ob-
tained the top 10 phoneme confusion pairs from our LTS
output for CMU dictionary. They are IX/AX, DX/T,
AE/AX, AA/AX, R/ER, S/Z, EH/AX, TH/1Y, DX/D,
AO/AA. Particularly, The top one confusion between
IX/AX dominates the entire confusion sets. It should not
be a surprise because IX/AX are among the most incon-
sistent transcriptions in any dictionary and there is almost
no consensus for IX/AX transcription among different
dictionaries.

10. SUMMARY

We have demonstrated that distance-weighted entropy
reduction, deleted-interpolation based smoothing, phone-
mic trigram rescoring and multiple tree combination can
collectively improve the generalization ability of CART-
based LTS conversion. We have achieved 20% error re-
duction on word level conversion and produced one of the
most accurate LTS converters that is practical, accurate,
and trainable. The future work will include the study on
stress assignment, how to get and use the syllable structure
information and integration with a morphological compo-
nent to achieve better robustness.
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