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ABSTRACT

This paper describes a system for the automatic extraction of
diphone units from given speech utterances. The method is
based on an automatic phonetic segmentation and on a
subsequent rule-driven diphone boundary detection. The
phonetic segmenter, developed at IRST, was trained and
tested both in speaker independent and speaker dependent
mode. A rule formalism, involving acoustic parameters,
arithmetical and logical operators, was defined to express the
acoustic/phonetic  knowledge acquired during previous
experiences on manual diphone segmentation. A specialized
tool for rule parsing was designed that processes a given
sequence of automatically derived phone boundaries using a
corresponding sequence of predefined acoustic parameters.
Several sets of rules were developed that include both general
principles and specific details concerning the content of the
diphone database of "Eloquens"®, the CSELT text-to-speech
synthesis system for the Italian language. The accuracy was
evaluated by comparing the manual and the automatic
segmentations of the speech utterances of a female speaker,
resulting in nearly 95% of correct boundary position, given a
tolerance of 20 ms.

1. INTRODUCTION

In concatenative text-to-speech synthesis systems the acoustic
dictionary represents a fundamental part, since it is strictly
related to the resulting quality and naturalness. The design
and collection of speech segments for the dictionary usually
requires a lot of time for manual segmentation and labeling of
speech databases.

In the literature, several automatic methods for unit extraction
have been proposed. They often adopt techniques derived
from speech recognition [1], [2]. In fact, the statistical
modeling of speech has proved to be advantageous in
speeding up the acoustic dictionary generation, favouring the
expansion of the number and structure of speech units and
encouraging the extension to different voices and languages.
However, the accuracy of statistical approaches strongly
depends on parameter estimation procedures, training
database sizes, whereas a lot of specific and detailed
acoustic/phonetic knowledge risks to be poorly represented.
This work originated with the aim of merging the IRST
experience on speech segmentation algorithms [3] [4] with the
CSELT acoustic/phonetic knowledge, acquired during manual
extraction of speech unit inventories for an Italian text-to-
speech synthesis system [5].

An automatic method for obtaining a predefined set of
diphone boundaries, starting from a given set of utterances

and from their corresponding phonetic transcriptions, will be
described. It is realized through the two following steps:

1) automatic segmentation and labeling according to the
phonetic transcription;

2) automatic diphone boundary location by application of
acoustic/phonetic rules.

The performance of both the phonetic and diphonic segmenter
will be discussed, by comparing manually and automatically
located boundaries at different error tolerances.

2. THE PHONE SEGMENTATION AND
LABELING SYSTEM

The automatic phonetic segmentation and labeling module
derives from the speaker independent continuous speech
recognizer developed at IRST [3] and based on Continuous
Density Hidden Markov Models (CDHMMs). Each phone is
modeled by a context independent HMM. The input to the
segmentation system consists of a speech waveform (sampled
at 16 kHz) and the corresponding phonetic transcription. The
acoustic analysis is performed every 5 ms, using a 20 ms
Hamming window, with preemphasis factor 0.95. Eight mel-
scaled cepstral coefficients are computed from the output of a
24 triangular bandpass filterbank, together with the
corresponding first and second order time derivatives; the
normalized log-energy and the corresponding time derivatives
are also computed for each frame.

The reference phone set is the one adopted for the
development of the CSELT text-to-speech synthesis system. It
includes 17 vowel-like phones (stressed, unstressed and
reduced vowels, semivowels and semiconsonants), 44
consonant phones (including some allophones and geminates),
two types of pause identifiers and a "schwa" symbol. For
HMM training, these phones are grouped into a smaller set
consisting of 36 phonetic units. Each HMM has a five state
left-to-right topology (a three state topology was used only for
short semiconsonants /j/ and /w/). To derive this phone
subset, reduced vowels were assimilated with their unstressed
counterparts, while distinct unit models were adopted both for
stressed and unstressed vowels. Geminates share the same
HMMs with the corresponding single consonants (with the
exception of geminate /r:/, whose acoustic structure is
somewhat different from non-geminate /t/).

3. PHONE SEGMENTATION
PERFORMANCE

In order to obtain a robust and consistent set of phone HMMs,
a suitable number of occurrences of each phone must be
present in the training database. On the basis of the previous



experience [4], the minimum number of occurrences, to
ensure an adequate system accuracy as well as a fair
performance evaluation, is 30 for training and 5 for testing.
Phonetic alignment experiments were carried out both in
speaker independent and in speaker dependent mode.

In the former case, the APASCI corpus [6] was used. This
corpus consists of syntactically consistent (even if
meaningless) sentences, designed to ensure a wide coverage
of phonetic contexts. A subset of this corpus, consisting of
200 sentences (uttered by 50 speakers, 25 males and 25
females), was manually segmented. The phone HMM training
and the system evaluation were accomplished by using 150
and 50 sentences, respectively.

The analysis of the discrepancy between the automatically
determined phone boundaries and the corresponding manually
segmented ones provided an average rate of 90.5% correct
boundaries, given a tolerance of 20 ms.

A second database, collected at CSELT laboratories, was used
for a speaker dependent evaluation with similar phonetic
coverage constraints. In this case, 200 sentences (about 7500
phones) for HMM training and 50 sentences (about 1960
phones) for performance evaluation were uttered by one male
(M1) and one female (F1) professional speaker. An expert
phonetician manually aligned each utterance with the
corresponding phonetic transcription: Fig. 1 reports on the
percentage of correct automatic placement of phone
boundaries, for different tolerances. The automatic alignment
performance is almost independent of the speaker, and it does
not change significantly, for tolerance intervals larger than 10-
15 ms.
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Fig. I - Speaker dependent phone segmentation rate

These results are not homogeneous across different classes of
phone sequences, as shown in Tab. 1 for the most
representative phone-to-phone transitions. For transitions
including stops, fricatives and vowels, the system performs
very well; performance is somewhat inferior in the cases
including nasals and liquids; finally, for vowel-to-vowel
transitions the lowest accuracy was observed. In the latter
case, besides a possible lack of training material, the main
reason of this performance loss is the intrinsic ambiguity, in
boundary placement, that characterizes manual segmentation
as well [7].

It is worth noting that, when using speaker dependent
HMMs, the automatic alignment system provided a definite
improvement: rates of 95.6% and 96.8% were obtained for
M1 and F1, respectively, whereas 87.4% and 88.6% were
obtained using the system in speaker independent mode. This
discrepancy is due both to the different acoustic environment

characteristics (between training and testing conditions) and
to an intrinsic more robust modeling that is attained in
speaker dependent mode. Moreover, while M1 and F1 are two
professional speakers, the speaker independent system was
trained using speech material uttered by naive speakers.

Sms | 10ms | 15ms | 20ms N
stop-vowel 64.8 | 97.4 | 993 [ 100.0 | 273
fricative-vowel | 68.0 | 96.7 99.4 [ 100.0 [ 181
liquid-vowel 50.0 | 829 [ 924 | 96.5 170
nasal-vowel 48.0 | 79.4 | 95.1 98.0 102
vowel-stop 73.0 | 934 | 97.6 | 98.6 211
vowel-fricative | 69.1 932 | 97.5 98.8 162
vowel-liquid 66.9 | 83.1 | 91.6 [ 97.0 166
vowel-nasal 59.6 85.1 92.5 95.7 161
vowel-vowel 24.8 | 48.9 69.3 81.8 137

Tab. I - Correct boundary placement rates across phone-to-
phone transition classes in speaker dependent mode.

N indicates the number of occurrences observed for each
transition class.

A further test database of 53 sentences (about 1860 phones)
was considered for evaluating the robustness of the speaker
dependent HMMs against their use with other voices selected
among a restricted number of professional speakers: to this
purpose another female voice (F2) was added to M1 and F1.
Given a 20 ms tolerance, the two speaker dependent cases
(M1-M1 and F1-F1) provided reference rates of 94.2% and
95.2%, respectively. Changing the test speaker caused
different system behaviour: the performance reduction was
small for speakers of the same sex (F2-F1: 3.1%), while
somewhat greater in the other cases (M1-Fl: 4.4%), in
particular when the system was trained with a male reference
speaker (F1-M1: 7.4%; F2-M1: 6.9%). Nevertheless, system
performance was better than using the speaker independent
HMMs.

4. DIPHONE SEGMENTATION

The Eloquens® Italian text-to-speech synthesis system is
based on about 1100 diphone units [5]. Each of them includes
transitions between a couple of half-phonemes, usually
bounded around the corresponding pseudostationary parts.

A specific corpus was designed, with the following controlled
characteristics for each diphone typology:

® phonetic and syllabic patterns of the word;

® diphone position inside the word;

® distance from lexical stress (for unstressed diphones);
® distance from lexical and syntactic boundaries.

In a classical implementation with a male voice (M1),
isolated nonsense words were used [5]; in a recent version
with a female voice (F1), lexical words containing three and
four syllables were selected and embedded in syntax-
controlled meaningful sentences. The first content word,
following an article or a preposition, was usually preferred for
its uniformity in terms of spectral shapes, articulation, pitch
and intensity. The candidate diphones are specific parts of
speech to be extracted from stressed or unstressed syllables of



such words according to given constraints. Diphone
segmentation was carried out manually from a corpus of about
700 sentences, taking into account waveform and spectrogram
observations, phone segmentations, energy contours, formant
trajectories and timing details. Diphone labeling consists of
two boundary markers and one transition marker, that
separates the two half parts of the phonemes; pitch markers
were assigned to voiced portions. Each particular phone or
class of phones was subjected to proper acoustic criteria for
diphone boundary location, also incorporating specific details
of the text-to-speech synthesis design. Spectral stability and
local maxima of signal energy as well as duration constraints
for vowels, half closure interval for single stops, pre-noise
attack for unvoiced affricates, central time positions for
fricatives, local energy minima for liquids represent some
examples of the general criteria involved.

5. ACOUSTIC/PHONETIC RULES

A rule-based mechanism has been designed with the purpose
of transferring the acoustic/phonetic knowledge described
above into an automatic segmentation system easily
applicable to enlarged diphone sets and to different voices.
Each rule can refer either to a specific diphone (e.g. [p_r]) or
to diphone classes (e.g. [stop_liquid]) or to a mixture of them
(e.g. [stop_r]), through a declaration mechanism, where single
phone symbols can be grouped into phone classes.

A generic rule is expressed in terms of "acoustic parameters”,
"conditions" and "operators".

The set of "acoustic parameters”, evaluated over 20 ms
Hamming windows, at 5 ms steps, includes:

® the signal energy (E);

® an 8-th order Spectral Variation Function (SVF), as
defined in [3];

® the relative time position (D) inside a phone.

All these parameters are normalized in order to assume values
in the interval [0,1]. The signal energy serves as indicator of
local maxima and minima and is used in contexts where
abrupt intensity changes are essential to locate a boundary
(e.g. /t/ and /r:/). The SVF parameter allows the detection of
fast spectral changes as well as of slow spectral transitions,
being correlated with formant movements: a low SVF value
usually indicates nearly steady spectral characteristics.
Finally, the D parameter, expressed as a percentage of the
phone duration, identifies a specific time position inside a
phone.

A "condition" allows to determine either a specific frame or
an interval of values for a given parameter, where a rule can
be applied. The set of "conditions" can be represented by the
following symbols:

® "==" gpecification of a value for a given parameter;

® "<X1,X2>" specification of the range of values [X1,X2]
for a given parameter.

The "operators" are symbols used to combine logically the

above mentioned "conditions" on the "acoustic parameters".
The set of available "operators" is:

® "&" (logical AND);
® " " (logical OR).

As an example, a rule can be expressed as follows:

#defrule left_rule [diphone_type] right_rule
where "left_rule" and "right rule" may be:
P1 == VI operator P2 <X1,X2>

The first condition (P1 == V1) searches for the frame where
the parameter P1 assumes the closest value to V1. The second
condition (P2 <X1,X2>) verifies if in a given frame (e.g. the
one resulting from the previous condition) the value of the
parameter P2 is inside the interval [X1,X2]; finally, operator
links logically the two conditions, so as the rule is applied
only if the logical constraints imposed by operator are
satisfied.

The "diphone type" specifies the left and right phones (or
phone classes) to which the "left rule” and "right rule" are
independently applied, respectively.

For example, the following segmentation rule:

SVF==0.0 & E<0.8,1.0> [vowel r] E==0.0 & D<0.3,0.7>

applies to all vowels followed by /t/; the left boundary is
placed at the frame where the SVF parameter takes its
minimum value, only if the energy parameter is within the
range 80-100%; the right boundary is positioned at the
minimum energy frame, only if it is around the central part of
/t/, in the range 30-70% of the phone duration. If all the
conditions are satisfied the rule is applied, otherwise it is
skipped.

Rule interpretation is accomplished by a left-to-right rule
parser, connected with the data structure of the phonetic
segmenter. The file of segmentation rules is a plain ASCIL
text, formed by two sections:

1) definition of the phonetic groups;
2) list of the diphone dependent rules.

Rules must be ordered, as the list is sequentially processed
starting from the most general ones and ending with the most
detailed ones. Sets of rules can be easily augmented with
more and more detailed conditions and values. For a given
diphone type, the last applied rule is retained.

6. EXPERIMENTAL RESULTS

Various sets of phonetic groups and segmentation rules were
defined and experimented on the female diphone inventory,
according to the following priority ordering:

® D-rules, with different assignment values to acoustically
homogeneous phonetic groups (vowels, stops, fricatives,
affricates, nasals, liquids, ...);

® SVF-rules plus D-range for vowels, liquids, nasals and

voiced fricatives;

E-rules plus D-range for vowels, nasals, /t/ and /r:/;

SVF-rules plus E-range for specific liquid allophones;

D-rules plus E-range for particular contexts of /r/;

D, E, SVF rule extension with increasing number of
assignment and range values and more detailed phonetic
groups (simple/geminate, voiced/unvoiced consonants,
stressed, unstressed and reduced vowels, semivowels,
semiconsonants, "schwa", ...).



The complete set of rules consists of 32 phonetic group
definitions and 167 overall rules. The left and right rule fields
are not always simmetric because of some phonotactic and
allophonic restrictions.

The rule system was tested by comparing manual and
automatic diphone boundary segmentations for the female
voice. Fig 2 reports on system performance evaluated on left
and right boundaries separately. As shown in the Figure, there
is a slight difference between the two cases, mainly due to the
independent left/right rule application mentioned above.
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Fig. 2 - Boundary placement accuracy in automatic diphone
segmentation.

The percentage of rule typology application, evaluated on the
diphone decomposition of the entire database of about 700
sentences (more than 26000 diphones) is reported in Tab. 2.

Rule typology
= & <,> left boundary right boundary
D - - 78.2 % 83.5 %
D & E 1.0% 0.9%
E & D 7.2 % 5.0 %
SVF [ & D 13.4 % 10.4 %
SVF [ & E 0.2 % 0.2 %

Tab. 2 - Statistics of rule typology application.

Duration rules are the most frequently applied, because of
their generality, direct evidence and widespread use in many
contexts, especially for unvoiced sounds. Actually, during
manual segmentation also expert phoneticians take advantage
of the time structure as the main cue in many phonetic
contexts. However, a significative amount of cases was better
solved by jointly using energy and duration constraints. In this
way, a compensation effect can be obtained for phone
segmentation inaccuracy typical of some specific contexts. As
an example, a local energy fall may be useful to determine a
reliable range where boundaries of /t/ and /r:/ can be placed:
in these cases it may be convenient to introduce different
duration constraints, according to the preceding or the
following contexts (vowels, consonants, "schwa", etc).
Similarly, a joint use of energy, spectral variation cues and
duration constraints was often applied to transitions including
steady-state speech segments (e.g. vowels).

The diphone boundary accuracy may change according to the
context: a decreasing performance was observed, in this order,
for unvoiced stops, unvoiced fricatives and affricates, low
energy voiced stops and fricatives, interconsonantal vowels,
nasals and liquids, vowel sequences.

The system has been extensively applied for diphone
segmentation of a very large database of more than 20000
isolated words (names, surnames, addresses, localities).
About 24000 compound non-uniform units were derived to
improve the quality and naturalness of an automated reverse
telephone directory service.

7. CONCLUSION

A method for automatic speech unit extraction has been
discussed. Statistical techniques for phone segmentation have
been merged with acoustic/phonetic knowledge to bootstrap a
rule-based system for diphone segmentation. Preliminary
experiments, using the system in a speaker dependent mode,
demonstrated a satisfactory performance that may be
compared to that of an expert phonetician. Thanks to the
system application to all the diphones of each utterance, the
use of this system will favour the expansion of unit
inventories. Another advantage is represented by the easy
formulation and extension of rule sets. A drawback to address
is represented by the dependence of system accuracy on the
phonetic aligner performance: this limitation is more evident
when the system operates in speaker independent mode and it
may be overcome by improving the phone-unit modeling.
Furthermore, next work will address the introduction of
segmentation rules that may involve large phonetic contexts
(e.g. left and right context-dependent or syllable-dependent
rules). Finally, the introduction of a robust automatic FO
estimator as well as of a pitch marker assignment module is
envisaged to make the system operating in pitch-synchronous
fashion.
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