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ABSTRACT
Construction of both text-to-speech synthesis (TTS) and au-
tomatic speech recognition (ASR) systems involves usage of
speech data bases. These data bases usually consist of read text,
which means that one has significant control over the content of
the data base. Here we address how one can take advantage of
this control, by discussing a number of variants of “greedy” text
selection methods and showing their application in a variety of
examples.

1. INTRODUCTION
Both automatic speech recognition (ASR) systems and
text to speech (TTS) systems have components that are
trained on text—typically read text. Surprisingly often,
training text is selected without giving much thought to
optimality of the selected text. For limited domain situa-
tions, it may very well suffice to select randomly a subset
from the domain for training purposes. In many ASR ap-
plications, and certainly in most TTS applications, how-
ever, the domain is open. And, as discussed at length in
[7], in open domain situations the issue ofcoverageis
vital, because by any measure differences between sub-
domains are too profound to generalize with any confi-
dence from one sub-domain to another. For example, [7]
mentions that only 50 per cent of triphones occurring in
two large text corpora occurred in both corpora.

In this paper, we first define the concept of coverage via
the concept of “unit” and then describe several techniques
for optimizing coverage.

2. COVERAGE AND “UNITS.”
Text can be analyzed at many different levels, correspond-
ing to different types of unit. In ASR, an example of a unit
is a phonemic-context sensitive phone, such as an /i/ in a
/p/ /t/ context, or a sub-word unit roughly corresponding
to some phone sequence.

In TTS, duration components typically receive as input
feature vectors that describe the identity, identities of
neighbors, and prosodic context of a given phonetic seg-
ment. Assignment of pitch accent types to words often in-
volves vectors describing the lexical identity of the word
in question, its location in the phrase, and parts-of-speech
tags of surrounding words. The intonation component
may use vectors describing features associated with a syl-
lable, including its segmental makeup, lexical stress, and
pitch accent type of its associated word.

In each of these cases, the input domains are discrete but
extremely large. For example, using parts-of-speech tags
in a window of five words in combination with five loca-
tion positions creates a space of potentially one hundred
million units.

Whether one should attempt to cover all units in the do-
main, or only the most frequently occurring units, depends
on the number of units, the cost of training, and the cost
of missing units. The latter point is somewhat subtle. As
remarked in [7], there are often cases where the frequency
distribution is extremely uneven, but where the number of
rare units is sufficiently large that their combined prob-
ability mass makes it quite likely that even a small text
sample will contain at least one rare unit. Hence, any sys-
tem has to bepreparedfor rare units.

But being prepared does not necessitate that all units be
included in the training sample. In TTS, for example,
many components involve rules that, to the degree that
they are accurate, allow generalizing from seen cases to
unseen cases. And in ASR, the recognition outcome is
the result of several probabilistic constraints of which the
acoustic analysis forms only one component—other com-
ponents being bi-gram models, vocabulary, and syntac-
tic constraints. Because of theseerror correction mech-
anisms, one may not need good acoustic model estimates
for eachphone in any context. One might only need good
estimates for frequently occurring units.

There is a risk, however, in relying too much on fre-
quencies observed in a particular corpus, because of the
instability of frequency distributions across text corpora.
We already mentioned that triphone occurrences differ
sharply between text corpora. These differences persist
when we look at frequencies of triphones that are shared
between two corpora, with typical correlations of only
0.30 or less between their frequencies. The reason for
this instability is elementary. Even if the underlying fre-
quency distributions are identical, the expected frequen-
cies of most units are small due to the unevenness of the
common distribution, resulting in many observed frequen-
cies of zero, one, or two. Which particular units occur
once or twice in one corpus, but not in the other, has a
large chance component.

And of course, underlying frequency distributions can
never be assumed to be identical. For example, even very



large corpora (such as the Associated Press Newswire
in 1987) have units (e.g., n-phones contained in the
name “Reagan”) that for good historical reasons have less
chance of occurring in similar corpora (such as the Asso-
ciated Press Newswire in 1997).

In summary, text corpora, no matter how large, should be
viewed as samples of a larger, abstractly defined domain
(e.g., the written English language). Tying system con-
struction too closely to a particular corpus runs the risk
of neglecting units that may prove unexpectedly frequent
in new corpora. Unless one’s system has rules that allow
generalization (as in TTS) or error correction mechanisms
(as in ASR), coverage of all units is the goal.

3. BASIC GREEDY ALGORITHM.
We now discuss algorithms for optimizing coverage. The
best-known algorithm is thegreedy algorithmas applied
to the set-covering problem [3]. Consider a set of sen-
tences, and a parallel set that contains for each sentence a
list of diphones occurring in the corresponding sentence.
How do we select a small set of sentences so that their
corresponding diphones containeach diphone in the larger
list at least once? This problem has a well-known approx-
imate solution in the form of the greedy algorithm. This
algorithm successively selects sentences. The first sen-
tence is the sentence with the largest diphone type count;
all diphones occurring in that sentence are removed from
the larger list. Once N sentences have been selected, the
next sentence selected is the sentence with the largest type
count of the remaining diphones.

We applied this basic algorithm for a perceptual experi-
ment, in which we wanted to evaluate the acoustic units of
a concatenative text-to-speech system. The challenge was
to have listeners process the smallest number of sentences
that yet contained each acoustic inventory element at least
once [6]. Starting with a list of over 67,440 sentences,
the greedy algorithm found a subset of 650 sentences with
complete coverage of all (2533) elements in the larger list.

As mentioned, it may be meaningful in training acoustic
models in ASR to optimize frequency-weighted coverage
of, e.g., triphones. The change in the greedy algorithm is
simple: instead of maximizing the type counts, one max-
imizes the frequency-weighted type counts. There is an
additional change that can be made. Often having only
one token of a given triphone is not sufficient for ade-
quate modeling—one needs at least, say, five tokens. This
can be accomplished by associating with each triphone a
counter, initialized to 5, and subtracting 1each time a sen-
tence is selected containing that diphone. We found that,
for example, a training set of 15,000 names can cover (at
94 per cent frequency weighted coverage) the triphones in
169,328 personal names at least 5 times; random samples
of 15,000 names cover only 72 per cent. The advantage
of greedy selection over random sampling increases as the
number of units decreases and the size of the training sam-
ple (here: 15,000) relative to the domain (here: 169,328)

decreases.

Paradoxically, we found that applying weights that are the
inverse of frequencies can improve performance in situa-
tions where complete coverage is feasible. This scheme
focuses the algorithm on sentences with rare units; in the
process, the more frequent units are picked upen passant
so that the algorithm does not have to search for additional
sentences containing these units. In applications of this
procedure, we obtained reductions in training text size of
up to 10%.

4. SUB-VECTORIZATION.
Up to now, we have treated units as atomic. However, in
many cases units are vectors. For example, in duration
prediction, input units often have the form

< =p=; IsStressed; : : : ; PhraseF inal > :

Is there some way to make use of this factorial structure?

Consider applications where the feature space is mapped
on some acoustic variable, such as segmental duration.
There is a setF = f1; : : : ; Ng, for someN , of fac-
tors. For eachi 2 F , the factorFi is a setfF i

1
; : : : ; F i

�i
g

of �i = jFij distinct levels or features. For example,
one factor might be the phone itself. The levels would
be the set of possible phones. Another factor might be
whether the phone is stressed, and the levels would be
the set of possible stress values. Thefeature spaceF is
defined byF = F1 � � � � � FN . Each individual pho-
netic segment occurrence� corresponds to a feature vector
~f (�) = (f1; : : : ; fN ) 2 F , wherefi 2 Fi for 1 � i � N .

One way this mapping may be characterized is as a sum
of terms, each of which depends on one or more of the
factors, but typically not on all factors. Specifically, letK

be a subset of2F such that the duration (for example) of a
feature vector(f1; : : : ; fN ) can be predicted by a sum of
parameters:

D(f1; : : : ; fN ) =
X

I2K

SI (fI1 ; : : : ; fIjIj) + � (1)

whereI = fI1; : : : ; IjIjg for I 2 K; � is some constant.
In theAnalysis of Variance[4], theSI terms have no par-
ticular form, but are subject to the zero sum constraint:
X

fIj2FIj

SI(fI1 ; : : : ; fIjIj) = 0; 1 � j � jIj; 8I 2 K:

(2)

In sums-of-products models, theSI terms have the form:

SI(fI1 ; : : : ; fIjIj) =

jIjY

j=1

SI;Ij (fIj ); 8I 2 K: (3)

Regardless of the specific form of these equations, theSI
terms in Eq. 1 allow modeling ofinteractions. Two fac-
tors are said to interact when the effect of one factor (as



measured by comparing two different levels on that fac-
tor holding all other factors constant) depends on other
factors. A well-known example is the effects on vowel
duration of postvocalic voicing and phrasal location: in
phrase-final locations, the lengthening effect of postvo-
calic voicing is much larger (on a log scale) than in phrase-
medial locations.

Not all factors interact. For example, the effects of phrase-
final lengthening are the same for stressed and unstressed
syllables, when measured on a log scale.

It is obvious that in order to estimate the interaction terms
from data, our training data must contain all combina-
tions of levels on the factors that occur in a single in-
teraction term. For example, ifF = f1; 2; 3; 4g and
K = ff1; 2; 3g ; f2g ; f2; 4gg, then we need all combina-
tions of factorsf1; 2; 3g, andf2; 4g, but not off1; 2; 3; 4g,
f3; 4g, andf1; 4g.

A sufficient condition forestimabilityof interaction terms
(more about which in the next section) is that the training
data cover the entire feature space, but it is obviously not
necessary. After all, the numbers of estimated parameters
are typically small (e.g., in the above example assuming
5 levels per factor, we have to estimate fewer than 200
parameters) compared to the number of data points (typi-
cally 50 phone durations per sentence). Hence, we should
be able to estimate parameters on far fewer sentences than
are required to cover the entire feature space.

We propose that in situations where one has agood sense
of which interactions should be of no concern, the follow-
ing procedure can be used:

1. Transcribe eachphone in the text corpus by the usual
vector,~f(�) = (f1; : : : ; fN ).

2. Generate from each individual vector a set of sub-
vectors, where each sub-vector corresponds to some
SI term. In the above example, the sub-vectors
would be(f1; f2; f3), (f2), and(f2; f4).

3. Proceed with the usual greedy algorithm, applied to
these sub-vectors.

This idea was applied to Mandarin Chinese [5]. It was
found that the 8,233 distinct sub-vectors occurring in a
data base of 15,630 sentences could be covered com-
pletely in just 427 sentences. Coverage of the original
feature space would have required thousands of sentences.
The training data were found to be sufficient for parame-
ter estimability. In fact, standard errors of estimate were
quite small, due to the even distributionof data points over
parameters and to the large ratio of observations to param-
eters (better than 100:1). Statistical analysis of the data
using sums-of-products models yielded reliable parame-
ter estimates, and resulting predicted segmental durations
were found to be quiteaccurate.

5. MODEL-BASED GREEDY SELECTION.
The sub-vectorization method works well in practice and
is extremely easy to implement, but it has two formal
weaknesses. First, it is mathematically quite possible that
even when all sub-vectors of the types(f1; f2; f3), (f2),
and(f2; f4) are covered, parameters of the corresponding
model still cannot be estimated. The reason is that for es-
timability one needs the presence of some combinations
of factors across these three groups. Thus, covering all
sub-vectors is not sufficient for parameter estimability.

Second, it is not necessary either, becauseunder the con-
straints described in Eqs. 2 and 3, we do not need all
combinations of all levels of factors contained in the in-
teraction term.

We now describe a new algorithm that finds the smallest
number of sentences that is guaranteed to be sufficient for
parameter estimation.

5.1. Parameter Estimability and Design Matrices
We briefly describe here standard theory of linear estima-
tion for the Analysis-of-Variance model.

A feature vector~f (�) corresponding to a given phonetic
segment occurrence� can be uniquely represented as a
compound row vector, in whicheach sub-vector encodes
the level on the corresponding factor. One way to do this
is to have the vector component corresponding to the level
in the factor set equal to 1 and the remaining components
equal to 0. Usually, the last level is represented as a vector
of all -1’s. For example, forF1 = fprimary stress, sec-
ondary stress, unstressedg, primary stressis mapped onto
(1; 0)t, secondary stressonto(0; 1)t, andunstressedonto
(�1;�1)t,

The design matrix for a sentences simply consists of a
matrixX(s) whose rows correspond to the phonetic seg-
ment occurrences ins, and are computed as indicated. The
design matrix for a corpusC is a vertical stack of matrices
X(s), wheres ranges overC.

If we let ~D(C) be the corresponding vector of observed
durations, then it is known [4] that the parameter vector
~P is estimable if and only if the matrixX(C) is of full
column rank, in which case the estimate of~P is given by:

~P =
�
X(C)tX(C)

�
�1

X(C)t ~D(C) (4)

Note. The concept of design matrix cannot be used di-
rectly for sums-of-products models. We conjecture that it
is possible to work out a similar solution using Jacobian
matrix rank [1], but we have not proven this. In practi-
cal terms, however, we found it always to be the case that
if data are sufficient for estimating the parameters of an
Analysis-of-Variance model, then they are also sufficient
for estimating the parameters of the corresponding sums-
of-product model. But we do not doubt that counterexam-



ples can be found.

5.2. The Optimization Problem

The optimization problem can now be formulated as fol-
lows: Find a subset of sentencesC 0 � C such that the cor-
responding design matrix still has full column rank, and
such thatC 0 is of minimal cardinality.

Elsewhere [2], we provide a detailed description of the al-
gorithm. The algorithm is a greedy algorithm, and starts
with the sentence whose corresponding design matrix has
the largest rank. Oncen sentences have been selected,
for the next sentence we select the sentence whose design
matrix produces the largest increase in rank when added
to the stack of design matrixes selected up to that point.
Thus described, this process is extremely computation-
ally expensive, because it necessitates at each step rank
computations of as many matrices as there are sentences.
Our algorithm, however, performs an incremental Gram-
Schmidt orthogonalization procedure that obviates these
rank computations.

Based on experiments on a 150 MHz R4400 processor on
an SGI Challenge machine with 1 Gb of main memory,
we estimate that large data sets (e.g., 5,000,000 sentences
with each 50phones, and 500 to-be-estimated parameters)
can be computed in a few days of CPU time. Since this
algorithm is typically used as part of a one-time off-line
training procedure, this is not a practical problem.

The most important result obtained is that when applied
to the same Mandarin Chinese data set as in section ,two
sentences were found to be sufficient for estimation of all
(30) vowel parameters. Even when the standard error of
estimate is bound to be large when so few data points are
available per parameter, repeated application of the selec-
tion procedure can produce data sets that are still quite
small (e.g., 50 sentences) yet produce uniformly small
standard errors.

In summary, our intuition that for estimation of 30 param-
eters one should not need significantly more than one or
two 50-phone sentences proved to be correct, and the pro-
posed algorithm is sufficiently fast that large-scale appli-
cations are realistic.

6. CONCLUSIONS

This paper discussed methods for optimal text selection
that can be used for training and assessing both TTS and
ASR systems. In our lab, we now routinely use these
methods.

The main contribution of this paper is two-fold. First,
we hope to have made researchers more aware of the im-
portance and feasibility of intelligent text selection pro-
cedures. Second, the linear model-based text selection
procedure showed that extremely efficient text can be se-
lected if one (1) is willing to make strong assumptions
about model structure and (2) is able to mathematically

tie the model to a greedy algorithm. In our algorithm, this
tie was provided by the design matrix, which is a very
simple concept. But it seems worth exploring if similar
mathematical ties can be discovered in entirely different,
perhaps more complicated types of models.
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