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ABSTRACT

In this paper, an RNN-based spectral model is pro-
posed to generate spectral parameters for Mandarin text-
to-speech(TTS). The RNN is employed to learn the re-
lations between the linguistic features and the spectral
parameters. The phoneme-to-spectral parameter rules
and the coarticulation rules between each two adjacen-
t phones are automatically learned and memorized into
the weights of RNN. The synthesized speech sounds more
fluent and smooth. The RNN is divided into two parts.
The first part is synchronized with syllable and is expect-
ed to simulate the phoneme-to-spectral parameter rules.
The second part is synchronized with frame and is ex-
pected to simulate the coarticulation rules between each
two adjacent phones. The line spectrum pair(LSP) pa-
rameters and the normalized energy contour are taken as
target value. Training with large database, the synthet-
ic LSP and energy contour match to the original LSP
and energy contours quite well. Moreover, an RNN-based
prosodic model which was proposed in our previous s-
tudy was combined to the spectral model to efficiently
simulate the spectral and prosodic information genera-
tion. Lastly, the LPC-based Mandarin T'TS is implement-
ed to examine the performance of our spectral model. The
synthetic speech sounds fluent and natural. The coartic-
ulation effect between each two adjacent phones which
makes synthesized speech sounds un-fluent and echo-like
was improved. However, due to the simple structure of
LPC-based synthesizer, the clarity of synthetic speech
can be improved by using the other spectral parameter
as target value. For example, the modify mel-cepstrum
parameter[5, 6, 7] or the FFT-based spectral parameter
can also be learned by RNN and synthesizes more clarity
speech. This is a initial work on the RNN-based spectral
model for text-to-speech. Some advantages of our spectral
model can be found. First, large memory space of synthe-
sis unit in traditional TTS is replaced by small memory
space of RNN’s weights. Second, the coarticulation ef-
fect can be alleviated and produces more fluent speech.
Third, the RNN-based prosodic and spectral information
generator[8, 9] can be easily combined to formed a more

compact RNN-based TTS system.
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1. INTRODUCTION

Speech is the most friendly interface between human and
machine. Amoung many speech technologys, the text-
to-speech(TTS), automatic convertion of stored text to
synthetic speech, plays an important role in many appli-
cations of computer. Many attractive applications on the
text-to-speech will be found in the future.

An generic TTS system can be functionally divided
into four parts: text analysis, spectral information gener-
ation, prosodic information generation, and speech syn-
thesizer. Input text is first analyzed in text analysis to
extract some linguistic features. Then, the template se-
quence of synthesis unit and prosodic information can be
assigned and generated according to the linguistic fea-
ture. The template sequence of synthesis unit is formed
in the spectral information generation in order to make
the synthetic speech sounds clear. Nevertheless, spectral
smoothing method may also be performed on the template
sequence in order to alleviate the coarticulation effect be-
tween each two adjacent synthesis units and make synhet-
ic speech sounds fluent. Prosodic information generation
assigns the pitch, timing, and stress pattern according to
the linguistic features for the speech synthesizer to modify
the template sequence in order to generate an intelligible
and natural speech. Speech synthesizer receives prosodic
and spectral parameter and products synthetic speech.

A clear, fluent, natural, and intelligent speech for un-
limited text is the main goal to develop an TTS sys-
tem. Prosodic and spectral informations which embed in
the speech are the two major parameters to make speech
sounds clear, fluent, natural, and intelligent. Thus, in the
past, most researches were focused on the prosodic infor-
mation generation and spectral information generation.
In the prosodic model, the intelligence and naturalness of
synthetic speech are the two main goals. Two main ap-
proaches which include rule-based and data-driven were
used to generate prosodic information. Successful results
were obtained by those approaches and natural speech was
obtained. In the spectral model, the clarity and fluency
of synthetic speech are the two main goals. The first goal
can be easily achieved by increasing the data rate of syn-
thesis unit. The PSOLA-based approach is a typical ex-
ample. In order to achieve the second goal, smoothing the
spectral parameters between each two adjacent synthesis
units is very important. There are two major approaches
were studied in the past. The first one 1s to directly use a



spectral smoothing technique[1]. In this approach, many
coarticulation rules must be inferred by observing a large
set of utterances with the help of linguists and acoustic
expert. The other is to model each synthesis unit by using
multiple templates and then choose a proper one in the
synthesis according to the context[3, 4].

Recently, the HMM-based spectral model[5, 6, 7] is
proposed to model the transition on spectral parameter
between each two adjacent phones. In this approach, both
static and dynamic features are taken into account when
spectral parameters are generated from HMMs. Synthetic
speech with quite smooth can be obtained. It avoided the
difficulty of manually inffered coarticulation rule.

Motivated by the successes of our researches on prosod-
ic information generation[8, 9] in the past, an RNN-based
spectral parameter generation is proposed in this paper.
The RNN is employed to learn the relations between the
linguistic features and the corresponding spectral param-
eters. T'wo input features with different clocks are used to
learn the phoneme-to-spectral information rule and coar-
ticulation rule between each two adjacent phones individ-
ually. Then, the RNN can be taken as a mechanism of
generating the spectral parameter from the given linguis-
tic features. Experiment result shows that phoneme-to-
spectral information and coarticulation rules are automat-
ically learned. An LPC-based Mandarin text-to-speech
system was used to examine the performance of the spec-
tral model. The synthesized speech sounds smooth and
fluent.

This paper is organized as follows. The proposed sys-
tem of synthesizing spectral parameters is discussed in
Section 2. Simulation results and discussions are listed in
Section 3. Conclusions are given in the last section.

2. THE PROPOSED SYSTEM

Mandarin is a tonal and syllabic language. Each Chinese
character is pronounced as a syllable. There are only
about 1300 phonetically distinguishable syllables, which
are the set of all legal combinations of 411 base-syllables
and 5 tones. Each base-syllable is composed of an op-
tional consonant initial and a vowel final. The continue
speech i1s composed of syllabic sequences which are pro-
nounced according to Chinese characters and are directly
connected. In the global view on the continue speech,
each syllabic waveform is static and maps to an Chinese
character. In the local view on the running speech, each
syllabic waveform is dynamic and smoothly or abrupt-
ly changes from one pattern to another. Moreover, the
sylable is composed of an consonant initial and a vowel
final, the speech waveform intra the syllable is also dy-
namic. Thus, producing the proper spectral information
and synthsizing fluent and smooth speech is not an easy
job.

In our spectral model, the multi-layer recurrent neural
network(RNN) is adopted in this work to implement the
spectral information generation. Fig.1 depicts the block
diagram of the RNN. The RNN is composed of two hidden
layers, one output layer, and two input layers which oper-
ate in different clock. It can be functionally decomposed
into two parts. The first part consists of the first input

layer and the first hidden layer with all outputs feeding
back to the input of itself. It is regared as a mechanis-
m of phoneme-to-spectral parameters. It operates on a
clock synchronized with syllable to generate some out-
puts representing the steady state of spectral parameter
at the current syllable. The input featues include the
tone T'(Sy), the type of initial 7(S;), and the type of final
F(S;) of the processing syllable S;; the tone T'(S;41) and
the initial type I(S;41) of the following syllable S;41; the
tone T(S;—1) and the final type F(S;_1) of the preced-
ing syllable S;_1; the pause duration P(S;) preceding the
processing syllable S;; and the pause duration P(S;41)
preceding the processing syllable S;41.

The second part of the RNN consists of the second in-
put layer, the second hidden layer, and the output layer.
It is the real spectral parameter generator. It operates
on a clock synchronized with frame to generate spectral
parameters need by a Mandarin TTS system by using
some frame-level features, and the value generated from
the first part. All outputs of the second hidden layer are
fed back to the input of itself. Besides, the output spec-
tral parameters are also fed back to the input of output
layer. By this arrangement, the spectral parameter gen-
erator becomes a dynamic system to be able to predic-
t these time-varying spectral parameters of real speech.
The input features used in the second part include the
initial indicator I7(Fy) and the final indicator FI(F};) of
the processing frame Fj. It is used to indicate the posi-
tion of current frame where it is in the processing syllable.
This arragement is expected to simulate the transition ef-
fect intra the processing syllable and the coarticulation
effect inter the processing syllable. In the output layer,
the sigmoid function is replaced by a linear combination
function. The spectral parameters which include 12-order
LSP coefficients and 1 normalized energy contour are di-
rectly obtained from the output layer.

3. SIMULATION

The performance of this RNN-based spectral parameter
generation is examined by simulation. A speech database
provided by Telecommunication Laboratories(TL) was used
in our simulation. The database contains 655 sentential
and paragraphic utterances which contain the phonetic-
balance sentence and the sentential text from newspaper.
All utterances were generated by a single male speaker.
The database was divided into two parts: a training set
and an outside test set. These two sets consist of 31730
and 7832 syllables, respectively. Speech signal was sam-
pled at 10k Hz and segmented into 10ms frames. Then,
the syllable segmentation was first done manually by ob-
serving the speech waveform and with help of hearing.
The 12-order LSP parameters and 1 normalized energy
contour of each frame were calculated and taken as tar-
get features. These two sets consist of 590359 and 146360
frames, respectively. The input features with syllable-
level and frame-level which are stated in previous section
were extracted from context and syllable duration, respec-
tively. The error back propogation(EBP) algorithm is em-
ployed to train the RNN. Over 100 training epoches were
used to converged approximately during the training pro-



cess. The RNN contains two parts which operate with two
different clocks. The first part receives syllable-level lin-
guistic features and operates with syllable-synchronized
clock. The second part receives frame-level linguistic fea-
tures and the output of the first part. It operates with
frame-synchronized clock and produces the 12-order LSP
and energy contours. Fig.2 shows the original and synthe-
sized LSP contours of an sentence for outside test. The
solid lines are the original LSP contours and the dash lines
are the synthesized LSP contours. It can be found that
the synthesized LSP contours match to the original LSP
contours well. Fig.3 shows the original and synthesized
energy contours with outside test. The synthesized en-
ergy contour also matchs to the original energy contour
well. Table 1 lists the mean, standard deviation, and root
mean square error(RMSE) of the 12-order LSP as well
as 1 normalized energy contour. All the RMSEs of the
inside and outside test are small. It is proved that the
relations between linguistic features and spectral parame-
ters were automatically learned. An LLPC-based Mandarin
TTS system was employed to test the performance of our
spectral model. In this system, an RNN-based prosodic
information generation which is proposed in our previous
study[8, 9] was also employed. The RNN-based prosod-
ic information and spectral information generation com-
nibed to integrate a more compact model. The synthetic
speech sounds fluent and natural. However, due to the
LPC-based synthesizer, the clarity of synthesized speech
must be improved in the future.

4. CONCLUSION

A RNN-based spectral parameter generation for Man-
darin TTS is proposed. The phoneme-to-spectral param-
eter rule and the coarticulation rule are automatically
learned and memorized into the weight of RNN. The coar-
ticulation effect between each two adjacent synthesis units
is alleviated by this approach. The RNN-based spectral
model can be taken as a mechanism of spectral parameter
generator. It can automatically generate spectral param-
eter from the input linguistic features. A more compact
TTS system with RNN-based spectral and prosodic pa-
rameters generator can be achieved. However, the clari-
ty of synthetic speech can be improved by using another
spectral parameter as target values.

Table 1. The mean, standard deviation, and RMSE of
the 12-order LSP as well as one normalized
energy parameters.
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Fig.1 The block diagram of RNN-based

spectral information generation.

LSP-1 | LSP-2 LSP-3 LSP-4 LSP-5 LSP-6 | LSP-7
Mean 0.1800 | 0.3440 | 0.6183 0.9440 1.1187 1.3946 | 1.6646
Standard Deviation | 0.0830 | 0.1255 | 0.1625 0.1975 0.2085 0.1535 | 0.1221
RMSE(Inside) 0.0452 | 0.0551 | 0.0784 0.0753 0.0738 0.0780 | 0.0697
RMSE(Outside) 0.0467 | 0.0564 | 0.0847 0.0822 0.0774 0.0858 | 0.0780
LSP-8 | LSP-9 | LSP-10 | LSP-11 | LSP-12 | Energy
Mean 1.8312 | 2.0570 | 2.2518 2.4875 2.6987 0.8704
Standard Deviation | 0.1257 | 0.1289 | 0.1165 0.1303 0.1288 0.1117
RMSE(Inside) 0.0634 | 0.0700 | 0.0635 0.0766 0.0840 0.0583
RMSE(Outside) 0.0694 | 0.0755 | 0.0671 0.0823 0.0913 0.0604




