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ABSTRACT

In this paper a new robust non-recursive algorithm for
parameter estimation of AR model of speech signal is
proposed. The proposed algorithm takes into account
the quasi-periodic excitation for voiced speech and
assumes the t-distribution with small degrees of freedom
« of the excitation signal. The method is based on the
covariance linear prediction with sliding window.
Experiments on both synthesized and natural speeches
have shown that the proposed robust algorithm gives
estimates with smaller variance and bias, compared to
the conventional non-robust algorithm. The choice of
=3 induces to the most efficient estimation.

1. INTRODUCTION

In the conventional linear prediction speech analysis the
LP parameters are determined by either the auto-
correlation method or the covariance method (CLP) [1].
CLP procedure minimize the sum of squared residuals
and weight all prediction residuals equally. Therefore,
the result is a least squares (LS) type algorithm. The LS
method can achieve good estimation results only when
the driving source is a Gaussian process. It is well
known that in many cases the source is of a quasi-
periodic nature with spiky excitation that is not a
Gaussian process, such as voiced-speech signals. For
these kinds of processes, the obtained results from the
LS type algorithms are biased and inefficient. The
obtained estimates are very much affected by strong
signal parts. We cannot accurately and -efficiently
estimate the parameters of the process.

In this paper, a new robust algorithm for the linear
prediction (RBLP) analysis of speech is considered. The
method is based on the t-distribution and covariance LP
method with sliding window. In the proposed method
we use a loss function that assigns large weighting
factor for small amplitude residuals and small weighting
factor for large amplitude residuals that are caused by
the pitch excitations. The loss function is based on the
assumption that the residual signal has an independent
and identical t-distribution t(or) with o degrees of
freedom [2]. The efficiency of this new estimator
depends on o.. When O — oo, we get the CLP method.
When the proposed method with small 0=3 is applied to
the problems of estimating the parameters of AR model
of the synthetic speech, we can achieve a more accurate

estimate and a smaller standard deviation (SD) than that
with large o. The t-distribution with small & has more
probability on its tail than that with large . By using
t-distribution with small o assumption, we assume that
the residual signal is more spiky than in Gaussian
assumptions. By using small o, a better separation
between the source excitation and the vocal tract system
can be achieved.

The paper is organized as follows: description of
the proposed method is given in Section 2, experimental
analysis is presented in Section 3, conclusions are
provided in Section 4.

2. ROBUST PROCEDURE

The residual signal g can be expressed as a function of
the linear prediction (LP) vector as

g (a)=s+ 2“,- S 2.1
j=1

T
where a=|a, a ap] ; a, are LP coefficients.
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The speech signal s; is observed along a window;

1<i< M, M is number of samples. When the exciting
distribution differs from Gaussian, least-squares criteria
leads to wrong results. Thus we minimized the sum of
nonlinear residual function, instead of minimizing the
squared residuals sum. We choose nonlinearity on a
such way, that its appliance down-weights influence of a
small number of large residuals.

J, (@)= Z ple,(a)] (2.2)

Loss function p(z) in (2.2) can be chosen as
p(z)=—log f(zla) and the solution of (2.2) is the
f(Za) is
probability density function (PDF). The residual signal
is assumed to have an independent and identical
distribution (IID) f(x).

The logarithmic of the residual likelihood function is

a|8 =log Hf €, (a ilogf 8 (a (2.3)
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maximum likelihood (ML) estimate.
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The loss function is log f (ei(a)) and the influence

function is defined as
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The Gaussian distribution
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is used for f(x) in the CLP speech analysis.

The Huber’s probability density function
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isused as f (x) in the Huber’s M-estimation. For heavy-
tailed distribution processes the Huber’'s M-estimate is
more efficient than the CLP method. This is because
the Huber distribution is heavy-tailed, so that the
influence function P (x) assigns less weight for the
large residuals caused by the spiky excitation. In this
paper we proposed to use the heavy-tailed t-distribution
model to construct an M-estimate.

The t-distribution with ¢ degrees of freedom, t(cr)

is defined by [2]
a+1
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For t(e), f, is the Gaussian distribution with zero

f. (%)=

(2.8)

mean and standard deviation (SD) equal to one. For the
estimation purpose, f (x) has to have a finite second

moment. f (x) has an infinite second moment for 0<3
hence, we use o >3. Research work showed that
choice of small degrees of freedom =3 induces to the
most accurate and the efficient estimation. Optimal
linear prediction vector a is selected by maximizing
the likelihood residual function in Eq. (2.3). The loss
function is modified in the similar manner as the
covariance method.
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To get a scale-invariant estimate, residual g is
normalized with 5. The factor s in (2.13) provides to
obtain a scale-invariant version of the estimator. In this
work, we used robust estimate of 5 defined as:

§=medianfe |, p+1<isM (2.13)
Maximizing L(ale) in (2.9) is equivalent to
minimizing I(a) in (2.12), because K_ and e are both
constants. The observed relation between the loss
function and the desired AR coefficient is nonlinear.

Therefore a Newton-Raphson iterative method need to
be used to obtain the optimal coefficients set a:

Ga""' =Ga" -V, (2.14)

where k is iteration number, Vis gradient vector
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The result from the CLP is used as the starting
value. Criteria (2.20) and (2.21) are used to terminate
the iteration. It is shown by simulation results that only
few iterations were need to reach a stationary point and
that 10 was a suitable value for stopping the
iteration. No further significant improvements can be

achieved when a value lower than 107 is used.




The proposed algorithm can be summarized as follows:
1. Calculate the initial ¢ by the CLP method

2. Calculate new § based on Eq (2.13)

3. Calculate new « based on Eq. (2.14)

4. Repeat step 2 and 3 until either one or both of the
stopping criteria in Eq(2.20) and (2.21) are reached.

3. EXPERIMENTAL ANALYSIS

The proposed RBLP algorithm have been tested on both
synthetic and natural speeches. The length of the sliding
window was 256 samples, while the sliding window step
was equal to one. For purposes of comparison, the
synthetic and separately spoken vowels were used.

3.1. Testing on synthetic data obtained by filtering
the excitation pulse train

To compare the performance of the algorithms, the
test signal for the vowel [a] was synthesized by filtering
an excitation pulse train with the pitch period T,=8ms.
The following formant center frequencies F; and their
bandwidths B;, i=1,...,4, in the spectral domain were
used for the vowel [a]: F,=730 Hz, B,=60 Hz,
F,=1090 Hz, B,=100 Hz, Fs=2440 Hz, B;=120 Hz,
F,=3500 Hz, B,=175 Hz. Assuming a sampling rate of
10 kHz, in the discrete time domain this corresponds to
the ecight-order AR model with the following
parameters: AR;=-2.221, AR,=2.895, AR;=-3.088,
AR,=3.277, ARs=-2.774, AR¢=2.355, AR;=-1.67,
ARg=0.751. The trajectories of AR parameters obtained
by the standard CLP method and RBLP method is
presented in Fig. 1 and Fig. 2 respectively. In the Fig. 3
we can clearly see the influence of the Dirak pulses with
period 2.5ms to the bias and variation of CLP estimated
trajectories. These influences were absolutely suppressed
by RBLP method.
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Figure 1: AR parameters obtained by CLP
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Figure 2: AR parameters obtained by RBLP
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Flgure 3. Zoomed AR5 and AR, parameters

Table 1. AR1 AR2 AR3 AR4 AR5 AR6 AR7 AR8

Aps. err.]|0.131(0.178]0.316|0.415[0.361]0.143]|0.086(0.009

Rel. err.|0.059(0.061]0.102|0.127(0.130|0.061|0.051{0.012

Std. dev.]0.012{0.019|0.037(0.048]0.039(0.015(0.011]0.006

Table 1: Standard CLP method

Aps. err.|0.39|1.04|1.75|2.18(2.07(1.49|0.84 | 0.27| .107®

Rel err.|1.74|3.59|5.65(6.65(7.45|6.32(4.93|3.64| .10

Std. dev.|0.49]1.33|2.22(2.76{2.61|1.86(1.04|0.34| .10

Table 2: RBLP method

Statistical data of trajectories obtained by CLP
method is presented in the table 1, while the table 2
contains data about the robust procedure. Absolute and
relative mean-errors are calculated, as well as standard
deviations. Tables show the superiority of the robust
procedure, which is reflected in much smaller value of
variance and smaller bias of parameter estimates.

3.2, Testing on natural speech data

In the case of natural human speech, the true
values of the vocal tract parameters are unknown. The
AR parameter estimates obtained on sliding window
shorter than the pitch period was used as the reference
trajectory [3]. The experimental analysis was performed
on isolated vowels, filtered by a low-pass filter with an
upper limit frequency Fe=4kHz, and digitized by a 12-
bit A/D conversion with a sampling rate of 10 kHz. In
addition, preemphasis of the speech signal was also
performed. In all the experiments, the AR model of the
8th order is used, and the results of the estimation of the
al-a8 AR parameters for the vowel 'a’ are presented in
Fig. 4. Here the dotted lines represent reference
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Figure 4.

trajectories (with the parts of the most accurate values),
obtained using CLP method with sliding window shorter
than the pitch period, while the dashdot and solid lines
represent the parameter estimates for CLP and RBLP
algorithm, respectively. These algorithms are based on
the sliding window longer than the pitch period. The
results presented indicate that RBLP algorithm tracks
much better the reference trajectory, and it is more
suitable for the natural human speech analysis than CLP
estimates. Also it can be seen that both CLP and RBLP
procedures give biased estimates, but the bias is smaller
for RBLP algorithm. Similar results are also obtained
for the vowels ‘e, 'i', 'o' and 'u', but they are not
presented owing to the space limitations.

4. CONCLUSIONS
In this paper we gave comparative analysis of standard

CLP method and non-recursive RBLP procedure in
estimating parameters of AR speech signal model. We

have shown that RBLP algorithm produced less biased
estimates of the LP coefficients than CLP method. Also,
the RBLP algorithm produced a smaller variance
estimates than CLP. The new estimator efficiency
depends on degrees of freedom «. The experimental
analysis shown that choice of 0:=3 leads to the most
accurate and the most efficient estimate.
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