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ABSTRACT

In this paper, an integrated approach to vector dynamic
feature extraction is proposed in the design of a hidden
Markov model (HMM) based speech recognizer. The inte-
grated model we developed in this study generalizes the con-
ventional, currently widely used dynamic-parameter tech-
nique, which has been confined strictly to the pre-processing
domain only, in two significant ways. First, the new model
contains state-dependent, vector-valued weighting functions
responsible for transforming static speech features into the
dynamic ones in a slowly time-varying manner. Second, a
novel maximum-likelihood based training algorithm is de-
veloped for the model that allows joint optimization of the
state-dependent, vector-valued weighting functions and the
remaining conventional HMM parameters. The experimen-
tal results on alphabet classification demonstrate the effec-
tiveness of the new model relative to standard HMM using
dynamic features that have not been subject to optimiza-

tion during training.

1. INTRODUCTION

In speech recognition, it is desirable to extract features that
are focused on discriminating between classes. The spec-
tral dynamic characteristics are shown to play a crucially
important role in speech perception, and consonants are
mainly perceived on the basis of the spectral transition into
the following vowels [5]. In the past few years, use of the
coefficients that measure dynamic changes in the spectra
has resulted in demonstrated success in enhancing the per-
formance of both speech recognition and speech parameter
generation systems [1], [6], [10], [16]. In practically all these
systems, however, the way in which the speech spectral dy-
namics 1s represented has been as naive as simply taking the
differences of or taking other experimentally chosen combi-
nations of the static feature parameters over an empirically
determined fixed time span.

The structure of many successful speech recognition sys-
tems typically consists of a feature analysis-extraction pro-

cedure followed by a statistical pattern classifier as shown
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Figure 1. A block diagram of a typical speech recognizer.

in Figure 1. Usually, the back-end classifier is designed in-
dependently of the front-end preprocessor. However, there
is no evidence that such a design stategy is the best for
speech recognition. The recent advent of discriminative
feature extraction (DFE) showed that improved recogni-
tion results can be obtained by using an integrated opti-
mization of both the preprocessing and classification stages
[2], [4], [9], [11], [13], [15]. In the conventional recognizer,
features are extracted and then the classifier performs a
mapping from feature space to discrimination space. The
new integrated recognizer maps from the original acoustic
measurement space to the optimized feature space and then
maps from the optimized feature space to the discriminative
space.

More recently, the cepstral time matrix [7], matrix co-
efficient filter [8] and time-varying linear filter coefficients
[14] have shown to provide an optimal construction of dy-
namic parameters from existing static ones. We present
in this paper an integrated model that generalizes the con-
ventional, currently widely used delta-parameter technique,
which has been confined strictly to the pre-processing do-
main only, in two significant ways. First, the new model
contains state-dependent, vector-valued weighting functions
responsible for transforming static speech features into the
dynamic ones in a slowly time-varying manner. Second, a

novel maximum-likelihood (ML) based learning algorithm



is developed for the model that allows joint optimization
of the state-dependent weighting functions and the remain-
ing conventional hidden Markov model (HMM) parameters.
Only the static feature vectors are used as the raw data to
the recognizer, which constructs the dynamic feature pa-

rameters internally within the recognizer.

2. CONSTRUCTION OF STATE-DEPENDENT
VECTOR-VALUED DYNAMIC FEATURE
PARAMETERS

The statistical model, called the vector-valed dynamic in-
tegrated HMM (VVD-THMM), which incorporates gener-
alized dynamic speech features described in this paper is
an extension of the scalar-valed dynamic integrated HMM
(SVD-THMM) [14]. The state-dependent weights to tran-
form static speech features into dynamic ones as explained
in [14] were considered as scalar valued. The more gen-
eral case of vector-valued weighting coefficients is developed
and implemented in this work. We show that our approach
based on this technique is appropriate to model the dy-
namics of cepstra since regression is done independently for
each dimension of the transformed cepstral space. This sta-
tistical model integrates the dynamic features that belong
traditionally to the preprocessing domain into the speech
modeling process. The integration is accomplished by defin-
ing a set of HMM state-dependent vector-valued weighting
functions, which serve the role of converting the static fea-
tures to the dynamic ones in a time-varying manner, as a
set of intrinsic parameters of the model that can be learned
from the speech data.

Let X = {1, Xs, - -+, X7} denote the the vector sequence
of static feature parameters having the length of 7' frames.
The dynamic feature vector Y; at time frame ¢ is defined
as a simple combination of the static features stretching
over the interval fframes forward and b frames backward
according to

Y = Wyiilips + Wik, 1<t<T, (1)
where W;; and W, ; are the vector-valued weighting coef-
ficients associated with the Markov state ¢. To simplify the
discussion, we assume that the static and dynamic features
are statistically independent. A Gaussian density associ-
ated with each VVD-THMM state ¢ (a total of N states)

assumes the form
bi(O¢) = bi(Xe, Vi) = bi(Xe)bi(Ve), (2)

where O, is the augmented feature parameters at frame
t consists of both static and the dynamic feature vectors.
In the above equation b;(X;) and b;(Y:) are d-dimensional

unimodal Gaussian densities for static and dynamic features

respectively, as
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where variables X' and Y indicate the static and the dy-
namic features, respectively. The parameters pz;, iy, are
the state-dependent Gaussian mean vectors and X ;, Xy ;
are the state-dependent diagonal covariance matrices. Su-
perscripts —1 and T'r denote matrix inversion and vector
transposition with d being the dimension of the static and

dynamic feature vectors.

3. THE MAXIMUM LIKELITHOOD TRAINING
PROCEEDURE

In this section, we describe closed-form solutions for jointly
training all the integrated HMM parameters using the cel-
ebrated EM algorithm according to the maximum like-
lihood criterion. The algorithm consists of iterative E
(expectation)-step and M (maximization)-step. The desir-
able objective function, which becomes suitable for maxi-
mization in the M-step, is established through a set of sim-

plified E-step procedures [3]:

Q@|®o) =Y Y N " quilog (u(X)bi(Ve).  (3)

i=1 j=1 t=1

where the weight +;; is the probability of being in state
¢ at time ¢ which accounts for the observation data X, V:
conditioned on the previous model ®; and this weight can
be computed by using the standard forward and backward
algorithms [12]. Re-estimates for the model parameters
are obtained in the M-step via maximization of the objec-
tive function with respect to all model parameters. The
re-estimation formulae for joint optimization of the state-
dependent vector-valued weighting functions defining the
dynamic features and of the Gaussian means for the dy-
namic features are derived as follows. The re-estimation
formulae for the remaining parameters are similar to those
for the conventional HMM [12].

After dropping several optimization-independent terms,

the objective function equivalent to that in eqn. (3) is

N T
Qo(py,i, Wi, Wei) = Z Z Ye,i[ Ve — uy,i]Trzﬁ Ve — thy,i]
i=1 t=1
In order for the maximum-likelihood approach to the prob-
lem of estimating dynamic feature parameters to be sensi-
ble, constraints on the parameters Wy ;, and Wy ; must be
provided. This is so because infinitely high likelihood would
be achieved by uniformly setting W;; = 0 and W,; = 0

without discriminability among different speech classes. In



this study, we explore non-linear type of constraint that is
imposed on the solution of the problem of jointly optimiz-
ing Wy, Wei and piy; in the M-step of the EM algorithm:
W?yi + Wii = C, where C # 0 is a model-specific con-
stant, serving the role of eliminating the possibility that
all Wy and Wh; are set to zero (singularity) thereby giv-
ing infinitely large but senseless likelihood. Note that the
use of discriminative training of parameter learning could
eliminate the need for the non-linear constraint [14]. The
simple dynamic features become a degenerative instance of
the above model when C = 2, W?yi =1 and Wii = -1

The Lagrangian of Qo(py,i, Wy, Wei) with respect to
the non-linear constraint can be written as

N
Q5 = Qolpy,i; Wi, Wei) + Z)\i (W?z +Wii— C) ,

=1

where A;’s are Lagrange multipliers. Setting the partial
derivatives of Qé with respect to Wy, Ws: A and py; to
zero, we establish the following set of non-linear system of

equations:
T
D valVe = i TS ey + AW = 0,
t=1

T
Z Ye,i[ Ve — ﬂy,i]TTE;th—b + S\in,i = 0,
t=1
W?,i + Wg,z —-C = Oa
T
Z%,i[yt = fig] = 0.
t=1

There are no general methods for solving systems involving
more than one non-linear equations in a closed form. The
re-estimation formulae is then established by solving a sys-
tem of the above four non-linear equations, we applied the
Newton-Raphson method to obtain an iterative solution [3],

with respect to each of the unknown model paramerters.

4. ENGLISH ALPHABET CLASSIFICATION
EXPERIMENTS

The experiments conducted to evaluate the various inte-
grated THMMS are aimed at recognizing the 26 letters in
the English alphabet, contained in the T146 speaker depen-
dent isolated word corpus. The speaker-independent train-
ing set consists of 10 tokens per word from two male and
two female speakers (m1, m2, {1 and f2). The remaining
16 tokens per word for each of the above four speakers is
used as test data. The preprocessor produces a vector of 13
Mel-frequency cepstral coefficients (MFCCs) for every 10
msec throughout the signal. The augmented feature vec-
tors used for the benchmark HMM consist of 26-elements,
with 13 cepstrum coefficients and 13 delta cepstra. The

Type of Model Classification Rate
Conventional HMM | 80.11%
SVD-THMM 81.55%
VVD-THMM 82.57T%

Table 1. TI 26-alphabet speaker-independent classification
rate as a function of the model type.

delta MFCCs are constructed by taking the difference be-
tween two frame forward and two frame backward of the
MFCCs. This window length of 50ms is found to be opti-
mal in capturing the slope of the spectral envelope, i.e. the
transitional information [14]. For the integrated HMM, only
the static feature vectors are used as the raw data to the
recognizer, which constructs the dynamic feature parame-
ters internally within the recognizer according to (1). To
be consistent with the conventional delta parameter tech-
niques, the window variables f, b and the model-specific
constant C' are set to 2.

The main goal of the experiments designed in this study is
to investigate the relative effectiveness of the vector-valued
dynamic-parameter technique in comparison with the con-
ventional and scalar-valued dynamic-parameter techniques.
Each word is represented by a single left-to-right, three-
state HMM (no skips), with single Gaussian state observa-
tion densities. The covariance matrices in all the states of
all the models are diagonal and are not tied. All transition
probabilities are uniformly set to 0.5 (all transitions from
a state are considered equally likely) and are not learned
during the training process. The conventional HMM mod-
els are trained from training data using five-iterations of
the ML training with single mixture for each state in the
HMMs [12]. The scalar-valued dynamic integrated HMM
(SVD-IHMM) are trained using five-iterations of the ML
algorithm with non-linear type constraint [14]. The vector-
valued dynamic integrated HMM (VVD-IHMM) are trained
according to the training procedure outlined in the previous
section.

The experimental results are summarized in Table 1.
We observe from Table 1 that both the integrated HMM
trained by nonlinear constraint is superior to the conven-
tional HMM. The SVD-THMM based classifier produces
81.55% accuracy with an error rate reduction of 7.2% com-
pared with the convention HMM classifier’s performance.
This error rate reduction is consistent with our previous ex-
periments using TIMIT database reported in [3]. From the
final classifier based on VVD-IHMM, which incorporated
vector-valued dynamic weighting functions, the best classi-
fication results have been obtained, shown as VVD-THMM
in Table 1. The recognition rate using the VVD-THMM
improved from 80.11% (conventional ML-trained HMM) to
82.57% which translates to 12.4% error rate reduction. Tt



also represents a 5.5% error rate reduction compared with
SVD-THMM. Among all three types of the model evalu-
ated, the VVD-IHMM performs better than the any of the

remaining.

5. CONCLUSIONS

We have proposed in this paper, an integreted view on
speech preprocessing and speech modeling in the design of
HMM-based speech recognizers. The new integrated HMM
generalizes the currently widely used dynamic-parameter
technique in two ways. First, the model contains state-
dependent, vector-valued weighting functions for transform-
ing static speech features into the dynamic ones. Second,
the EM algorithm is developed for the integrated HMM that
allows joint optimization of the state-dependent weighting
functions and the remaining conventional HMM parame-
ters.

The state-dependent weights to tranform static speech
features into dynamic ones as explained in [14] were con-
sidered as scalar valued. The more general case of vector-
valued weighting coefficients is developed and implemented
in this work. We found that our approach based on this
technique is appropriate to model the dynamics of cepstra
since regression is done independently for each dimension of
the transformed cepstral space. The best error rate reduc-
tion of 12.4% is obtained using the new model, tested on
a TI alphabet classification task, relative to conventional
HMM. Compared across all three classifiers, VVD-IHMM
produced the lowest error rate and is the new efficient way
of describing the dynamic characteristics of speech cepstra.
Although we restrict our presentation to only the recognizer
based on HMM, the basic principle guiding our research is
sufficiently general and can be applied to all types of speech

recognizers.
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