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Abstract

In this paper a method to decompose a conventional fea-
ture space (LPC-cepstrum) into subspaces which carry
information about the linguistic and speaker variability
is presented. Principal component analysis is used to
study the correlation between these sub-spaces. Ori-
ented principal component analysis (OPCA) is then
used to estimate a sub-space which is relatively speaker-
independent. A method to estimate the dimensionality
of the speaker independent sub-space is also presented.
Original features can now be projected into the speaker
independent sub-space to make them less sensitive to
speaker variations. Finally the effectiveness of the pro-
posed method in suppressing the speaker dependence
1s studied by experiments conducted on two different
databases.

1 Introduction

Efficient feature extraction is the key to robust speech
processing systems. An efficient feature extraction tech-
nique should be able to capture the variability in the
data caused by a desired source while suppressing the
variability caused by undesirable sources. For exam-
ple, in speech recognition, it is highly desirable to have
features which carry mainly linguistic information(LI).
Similarly for speaker recognition it is important to have
features which carry mainly the speaker specific infor-
mation(ST). In the case of speech recognition the LI can
be considered as the signal and SI as noise. In this paper
a scheme to decompose the feature space into sub-spaces
which carry information about (i) linguistic variability
(relatively independent of speaker) and (ii) speaker vari-
ability (relatively independent of linguistic variability) is
proposed. This decomposition is achieved by represent-
ing LI and SI by appropriate difference vectors. Dif-
ference between feature vectors extracted from different
phonemes uttered by the same speaker mainly carry the
linguistic variability (d;). Similarly, the speaker vari-
ability in the feature space is represented by the differ-
ence vectors(d;) between the feature vectors extracted
from the same phoneme uttered by different speakers.

Such a decomposition can be used to estimate a linguis-
tic sub-space which is relatively less sensitive to speaker
variability. This 1s done by estimating the directions in
the feature space where the ratio of the variance caused
by the LI to that caused by SI is high. A conventional
feature can then be projected into this sub-space to
make it relatively insensitive to speaker variability.

2 Decomposition of the feature
space

In this section a method to decompose a conventional
feature space (defined by LPC-cepstrum) into sub-
spaces carrying mainly LI and SI is presented. The ini-
tial feature representation x is the LPC-cepstrum and
is considered as a random variable. Figure 1 shows the
feature vectors extracted from a segment of speech from
two speakers. The rectangular boxes represent feature
vectors extracted from a frame of speech data. It is as-
sumed that the segments of speech uttered by the two
speakers are linguistically identical (same phonemes) and
are perfectly time allingned. Let x; and x3 be the cep-
stral vectors from two different phonemes uttered by the
same speaker. The difference vector carrying LI is given

by

dl = X2 —Xjp. (1)
By taking the difference between x5 and x; the informa-
tion which 1s common to xs and x; 1s removed. Hence
the static (stationary) speaker characteristics and the
channel effects are suppressed. Thus it can be con-
cluded that the difference vector d; mainly carry infor-
mation about the linguistic variability and the variance
caused by the dynamic speaker characteristics. Now
consider the case where x! and x? represent the LPC-
cepstrum extracted from the same phoneme uttered by
two different speakers. Since x' and x? are features
extracted from the speech signal corresponding to the
same phoneme their difference will mainly contain SI.
The difference vector representing SI is given by

d, = x?-—x'. (2)
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Figure 1: Derivation of the difference vectors.

Since x! and x? carry the same linguistic information
the difference vector d; will mainly carry information
about the speaker variability and the difference in the
channel and environmental condition captured by the
utterances of the two speakers. If (i) the dynamic (non-
stationary) speaker characteristics is negligible and (ii)
the channel and environmental conditions captured by
the speech signals of both the speakers are identical,
then the sub-spaces defined by the random vectors d;
and d; capture the linguistic and speaker variability re-
spectively.

3 Subspace based feature extrac-
tion

In this section a subspace based feature extraction tech-
nique which 1s expected to yield features which are less
sensitive to speaker variations is presented. First a con-
ventional feature extraction technique is used to extract
features which contain both linguistic and speaker in-
formation. Let this initial feature be represented by x.
Then the idea is to extract a set of basis vectors which
point to those directions in the feature space where the
ratio of variance caused by LI to that caused by SI is
maximum. Let these basis vectors be represented by,
e,; t = 1,2 .. k. Now the original feature vectors x can
be projected onto these basis vectors as shown by the
following equation.

o=ET

o X, (3)
where E, is a matrix whose columns are composed of the
basis vectors. After the projection, ratio of the variance
of o caused by LI to that caused by SI is maximum.

3.1 A method to derive the basis vectors

In this section a method to derive the basis vectors, e,
from d; and d; 1s developed.

From the random vectors which represent LI and SI,
the corresponding covariance matrices can be computed
by the following equations.

R, =
R, =

E[(d; — di)(ds = d))"]. (4)
E[(ds — dy)(ds — dy)T]. (5)
Since the objective is to maximize the variance caused
by LI and minimize the variance caused by SI the objec-

tive function that we are interested in maximizing can
be written as,

Signal LI
~ ST g (dTe;)’

E(leeZ)z _ eZ»TRleZ' _ i = p;

~ eTRse; N;

Noise

In the above equation S; and N; are the amounts of sig-
nal and noise variance captured by e;. Note that we are
interested in finding the direction e; which maximizes
the signal-to-noise ratio, p;. Deriving such directions
(or projections) is nothing but the solution to the fol-
lowing generalized eigen value problem.

Rleo, = /\o,Rseo,a (6)

The solution to the above stated generalized eigen value
problem 1is called the oriented principal components of
They are called ori-
ented due to the fact that the principal component e, is
steered by the distribution of ds. It will be oriented to-
wards the direction where d,; has the minimum variance
while maximizing the projection energy of d; [1]. From
s;g:; as the signal-
to-noise ratio. Instead of a single basis vector if a set of
basis vectors are used (for example the first few oriented

principal components) then the signal-to-noise ratio is

T
given by %, where the columns of the matrix

the random vector pair (d;, ds).

now onwards we refer to the ratio

E are composed of a set of oriented principal compo-
nents. The original SNR can be computed by making E
an identity matrix. Also note that the space spanned by
the oriented principal components represents a speaker
independent subspace.

3.2 Estimation of the dimensionality of
the speaker independent subspace

In this section a method to estimate the dimensional-
ity of the speaker independent subspace is presented.
This estimation can be made solely depending on the
signal-to-noise ratio. But it must be noted that a direc-
tion with high SNR can be one where both the signal
variance and noise variance is low (but their ratio be-
ing large). While estimating the dimensionality of the



speaker independent subspace it is desirable to deem-
phasize such direction. This can be achieved by weight-
ing the SNR p,,, with S;. The following equation shows
how this weighted signal to noise ratio can be used to
estimate the dimensionality of the subspace.

J

p = agmaxd g5 G
i=1

Thus from the above equation, p is the dimensionality

of the subspace which maximizes the SNR and at the
same time captures most of the signal variance.

4 Experiments

In this section the results obtained in applying the pro-
posed method to two different databases are presented.

4.1 VOICE database

This database consists of 15 sentences uttered by four
male and four female speakers. While recording the sen-
tences the speakers were asked to speak in synchrony
with a metronome. This made sure that the same sen-
tences spoken by different speakers were almost per-
fectly time allingned. LPC-cepstrum (10th order LPC
represented by 15 cepstral coefficients) was extracted
from these sentences. The difference vectors correspond-
ing LI and SI were computed as described in Section 2.2
(equations 2 and 3). While the natural time alignment
between the sentences spoken by different speakers was
exploited to compute the d;, the phonetic labeling was
used to compute d;. The covariance matrix correspond-
ing to these vectors are given by R; and R;. In order
to compare the statistics of the distribution of d; and
d;, the eigen vectors corresponding to R; and R were
compared using the following equation,

Ci = ey ey, (8)

where e;; and ey; are the ;) eigen vector derived from
R; and R respectively. The correlation C; reflects the
similarity of the distribution of d; and ds. For example,
if for all z, C; 1s unity, then 1t means that the variabil-
ity introduced by the LI and SI are so similar that they
cannot be separated using a linear projection. Figure 2
shows the correlation Cj for all the eigen vectors. The
first two eigen vector corresponding to LI and SI are
highly correlated. This suggests that the major amounts
of variance caused by LI and SI are oriented in the same
direction in the feature space. It can also be noted that
3,4 through the 7, eigen vectors of R; and R are rel-
atively uncorrelated. This suggests that the statistics
of the distribution of d; and d; are essentially different
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Figure 2: The correlation between the principal com-
ponents extracted from the vectors representing LI and

SI.

and thus a set of basis vectors can be derived to im-
prove the SNR. The set of basis vectors, e,, were then
computed from R; and R using equation 7. The orig-
inal feature vectors were then projected into the space
spanned by the basis vectors using the equation 1. Fig-
ure 3 shows the SNR of the projected and the original
features. The doted line shows the variation of the SNR,
of the LPC-cepstrum as a function of the number of
cepstral coefficients. The solid line indicates the SNR
of the transformed feature. It can be observed that the
SNR of the transformed feature is significantly higher
than that of the original cepstral feature. It can also be
noted that the highest SNR is obtained while using the
first basis vector and as more and more basis vectors
were used the SNR deteriorates. The optimum number
of basis vectors were then estimated using equation 8.
The dotted line in Figure 4 shows the variation of the
weighted SNR as a function of the number of basis vec-
tors used. From the figure it is clear that the weighted
SNR is maximum when the first four basis vectors were
used. This suggests that the optimum number of prin-
cipal components to be used in order to extract the LI
is around four.

4.2 TIMIT database

In the previous section we observed that by using the
first four oriented principal components the LI can be
efficiently represented. In this section we attempt to
evaluate the generalization capability of this method.
By generalization capability we mean the performance
of these basis functions on any dataset other than the
one from which it was extracted. A training and a test
set were identified from TIMIT. Each of these sets con-
tain ten phonetically balanced sentences uttered by 100



speakers. Since the sentences spoken by different speak-
ers were not allingned, DTW paths were used to derive
the difference vectors, ds. The proposed method was
then used to extract the basis vectors from the training
set as well as the test set. Figure 5 shows the perfor-
mance of the basis vectors on both the training and the
test data. From the figure it is clear that the basis func-
tions derived from the training data set performs almost
as good as those derived from the test data. This shows
that the proposed method is capable of finding the di-
rections in the feature space which separates the SI from
the LI irrespective of the type of data (provided that the
training set is sufficiently large). The optimum num-
ber of basis vectors was then estimated using equation
8. The solid line in Figure 4 shows the variation of the
weighted SNR. From the figure it is evident that the
linguistic information can be efficiently represented by
approximately four basis vectors. This observation is
consistent with the earlier work reported by Hermansky

[2, 3].

5 Conclusions

Results indicate that the proposed method to represent
the LI and SI by appropriate difference vectors is ef-
fective in identifying subspaces corresponding to the LI
and SI. Once these subspaces are identified then the
oriented principal component analysis can be used as
a tool to suppress the variance in undesired directions
(noise or SI) and to enhance variance in the desired di-
rection (signal or LI). We also observed that the optimal
number of oriented principal components is four for the
simultaneous enhancement of LI and suppression of SI.
It was also demonstrated that the proposed method has
strong generalization capability. i.e., the basis functions
derived from a sufficiently large amount of data can be
used to enhance the signal-to-noise ratio of any new set
of data.
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Figure 3: Demonstration of the improvement in signal-
to-noise ratio due to application of the basis vectors.
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Figure 4: The weighted SNR is exhibiting a peak at
around four indicating the optimal number of basis vec-
tors to be used for representing the LI.
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Figure 5: Comparison of the performance of the basis
vectors when they were used on the training and test
data.



