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ABSTRACT

A number of studies have shown that a pair of percep-

tual effective formants can be defined to capture most
of the phonetic information present in vowels. Various
methods of computing the effective formant values were
proposed. However, many of them depend on the accu-
racy of conventional formant estimation. In this work,
we study methods of automatically estimating perceptual
effective formants without estimating the actual formant
values and compare the results with the perceptually mea-
sured effective formant values. The preliminary results
show that the method is effective in estimating the percep-
tual effective formants. Classification experiments using
perceptual effective formants as explicit features do not
demonstrate any advantages. However, using the percep-
tual effective second formant value as input to our formant
estimation algorithm can help to correct up to 44% of the
formant tracking errors.

1. INTRODUCTION

Substantial improvements to speech recognition may be
attained if the dynamic properties of spoken language are
modeled adequately[1]. Several lines of reasoning indicate
that formant-based features[2] are a good candidate for
this goal, at least for the sonorant regions of speech. Using
the formant frequencies themselves for recognition suffers,
however, from a number of significant drawbacks. First,
the formants are highly dependent on vocal tracks, there-
fore not speaker independent, and (more importantly for
practical implementations) have been notoriously difficult
to track reliably.

Fortunately, there is much evidence that complete
knowledge of all formant frequencies is not required for
accurate recognition. Perceptual experiments by Fant
and others[3, 4] suggest that a two-formant approxima-
tion model (perceptual effective formants) is a valid and
robust representation for most vowels. ' In their work,
two prominent spectral peaks (they use F1 and F2’ which
is a function of the first four formants.) are found to be
sufficient to describe all Swedish vowels[5]. The detailed
description of the model, as well as measurements of the
effective formants of the 18 cardinal vowels, is provided
in [6]. Fant and Risberg[3] studied vowel separation us-
ing the “effective” formant model , comparing it to the

In this paper we refer the effective perceptual formants as
as Fl-prime (F1’) and F2-prime (F2’).

pure F1 and F2 formant values. These studies suggest
that the effective formant model (F1-F2’) separates the
vowel space better than the standard F1-F2 combination.
In addition, these models do not require detailed tracking
of formant frequencies: when resonant frequencies become
so close that it is hard to distinguish the individual tracks,
a single effective formant is deemed sufficient for recogni-
tion. These previous studies suggest that perceptual effec-
tive formants might be good speaker independent features
to describe vowels.

Based on these insights, in this paper, we investigate a
method of estimating perceptual effective formants using
low-order PLP spectral peaks on real speech and study
the effectiveness of using them as features in vowel classi-
fication.

2. EFFECTIVE ESTIMATION OF
PERCEPTUAL FORMANTS

Various methods of computing the F1’ and F2’ values have
been proposed. Most commonly, these values are com-
puted as functions of the actual formant values[3, 4, 7].
As noted, this requires determination of the underlying
formant tracks, and thus is undesirable for practical sys-
tems.

Itahashi and Yokoyamal[8] estimate the effective for-
mants without computing the true formant frequencies.
In this method the high-order LPC spectrum is warped
according to the Mel scale. The resulting power spectrum
is then weighted according to an equal loudness contour,
from which the autocorrelation function is computed by
the inverse Fourier transform. Linear predictive analy-
sis is performed to obtain the poles which represent the
formants according to the Mel scale. The second formant
thus estimated was found to be a good estimate of F2’ de-
termined by auditory matching. Hermansky[9] performed
similar experiments, studying the spectral peaks obtained
using a 5th order PLP model. These experiments were
performed using synthesized speech for each of the 18 car-
dinal vowels. The synthesized data were based on formant
values provided by Bladon and Fant[6]. The agreement
between values from the PLLP model and from Bladon and
Fant’s perceptual data is rather good.

We intend to build on these insights, with the even-
tual goal of using effective formants as input to a speech-
recognition system. With that goal in mind, we here eval-
uate various methods of calculating the effective formant
frequencies.

For our comparison, we use the set of 18 vowels ana-

lyzed by Bladon and Fant[6]. (Whereas[9] used synthe-



sized versions of these vowels, we were able to obtain the
actual stimuli.) In the following table we compare esti-
mated values for F2’ obtained with various estimators to
the values measured in Bladon and Fant’s perceptual ex-
periments. These estimators were based on (a) standard
linear predictive (LP) analysis, (b) LP analysis based on
mel-scale frequency warping (MEL),(c) Itahashi’s method
(MELP), and (d) LP analysis based on Bark scale fre-
quency warping (PLP). In each case, a sixth-order anal-
ysis was performed?, and the value for F2’ was defined
as the frequency corresponding to the second pole of the
corresponding polynomial. Also included in the table are
values obtained with the formant-based calculation pro-
posed by Bladon and Fant (fmt). All the values in the
table are in Bark scale.

phone percept fmt LPC MEL MELP PLP
i 14.1 14.2  14.5 13.6 14.0 12.1
e 12.5 12.5 124 11.6 11.8 11.4
E 11.7 11.3  10.1 10.5 10.4 11.0
a 9.7 9.5 8.5 8.8 8.9 9.4
A 8.2 8.6 8.0 7.8 8.2 8.9
0 6.6 6.8 14.6 6.6 7.3 8.7
o 6.0 6.2 14.4 8.0 4.6 8.1
u 5.8 6.0 15.1 8.2 9.2 6.9
y 11.8 11.9 11.8 10.9 12.1 11.4
0 10.1 10.2 84 9.5 9.5 10.1
oe 10.4 10.3 8.1 9.3 9.5 9.9
OE 9.7 9.8 8.1 9.1 9.4 9.7
0 7.4 8.1 7.8 7.9 8.0 8.8
- 9.0 9.0 14.8 8.5 8.2 9.2
g 9.2 9.3 16.4 8.6 8.7 9.6
m 9.1 9.3 8.5 8.9 8.9 9.7
I 10.8 10.8 10.3 10.3 10.1 10.9
U 9.9 9.8 9.8 10.0 9.9 10.5
avg err | - 0.18 2.7 0.76 0.73 0.79
Table 1. Perceptually estimated (Bladon and

Fant, 1978) and automatically estimated frequen-
cies of perceptual effective formants of 18 cardinal
vowels in Bark scale.

We see that analysis methods which include spectral au-
ditory scale warping are substantially more accurate than
pure linear-predictive analysis, but not as accurate as the
formant-based method. In particular, the PLP method
overestimates F2’ for /o/ and /O/, and underestimates it
for /i/. The comparative rankings are confirmed by the
values obtained for F1’. In addition, LPC sometimes fails
to produce a pole below 1000 HZ.

3. APPLICATION OF PERCEPTUAL
EFFECTIVE SECOND FORMANT

To explore the application of the perceptual effective for-
mants, experiments have been performed to test various
possibilities. In the following classification experiments,
the task is context-independent, speaker-independent
vowel classification. The TIMIT database is used as the
corpus. The 14 vowels used in the experiments are:

iy ih eh ae ah uw uh aa ey ay oy aw ow er

25th order PLP model was used first and found that when
the F'1’ and F2’ merge, it is difficult to determine automatically.

The training set includes all the sz and s: files in the
TIMIT training set, and the dev set is MIT dev set[10]
which contains sz and sz files. Details are shown in Table
2:

data set | # utterances | # vowels
train 3696 sx si 57110
dev 400 sx 6276

Table 2. The data set used in the experiments.

In all experiments mentioned in this paper, three con-
ventional formants are estimated for each vowel by using
a formant estimation method proposed by Welling and
Ney[11] and followed by a formant tracking algorithm to
fix obvious errors. In the classification experiments, the
features are the coefficients of 3rd order polynomial ap-
proximation of the formant trajectories and the log power.
Log duration is also used as one feature[2].

3.1. Classification using perceptual effective for-
mants

To test the possibility of using perceptual effective for-
mants as explicit features in vowel classification, we did a
comparison test using both F1’ plus F2” and F1 plus F2
as classification features. Results are shown in Table3.

feature dimension | % correct
E+F14+F24D 13 66.1%
E+F14F24+D 13 62.9%
E+F1U4+F24+D 13 63.5%
E+F14+F24+F3+D 17 70.4%
E+F14F2°4+F3+D 17 68.5%
E+F1U4+F2°4+F3+D 17 69.2%
E+F14F24F3+D+B 20 70.9%
E+F1U4+F2’+F34D4+B 20 70.6%
E+F14F24F3+D+B+C4P 29 73.2%
E+F1U4+F2°4+F3+D+B4+C4P 29 72.5%

Table 3. Classification comparison using formants
and perceptual effective formants. E represent
power; D represent log duration; C represent con-
text; B represent average bandwidth; P represent
pitch.

The results indicate that there is no advantage to using
F1’ and F2’ as explicit features. There are three possible
reasons to explain this result, which seems to contradict
the observations in [3] :

1. The estimation of the perceptual effective formants
although stable, lost detailed information in low fre-
quency resolution. Therefore the separability be-
tween vowels is reduced.

2. The estimation of the perceptual effective formants
is not sufficiently accurate to gain the advantages ob-
served using the perceptually measured data.

3. In continuous speech, with contextual effects, the ob-
servation of perceptual effective formants and the
pure formants might not be as effective as for the
isolated vowels like that studied in [3, €].

To further verify the second possibility and compare
it to the assumption made in [3], i.e. F1 and F2’ might



separate the vowel space better than F1 and F2, we es-
timated the first two formants and perceptual effective
second formants for the 18 vowels described in Section
2. The results are shown in vowel graphs Figure 1 and
Figure 2 as that in [3].
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Figure 1. F2° versus F1 of 18 Swedish vowels us-
ing perceptual experiment obtained data and au-
tomatically estimated data.

Figure 1 shows the vowel diagram (F1-F2’) of the per-
ceptually estimated data versus data automatically esti-
mated using our low-order PLLP method. It can be seen
that on the vowels /o/, /O/ and /i/, the algorithm com-
mits substantial estimation errors which would make the
different vowels closer than the perceptual data in the
vowel graph. The resulting estimates for these vowels are
thus less discriminable than those of the data obtained
perceptually.

Figure 2 compares vowel diagrams of F1-F2 versus F1-
F2’, in which F2’ is estimated by the low order PLP
method. It shows that becauses of the estimation error of
F2’, the F1-F2’ combinations for these vowels are less sep-
arable than the corresponding F1-F2 combinations. This
helps to explain the classification results we obtained on
TIMIT data.

These plots suggest that, although our estimation of
effective formants is quite accurate, the errors committed
impact the utility of these features negatively. We next in-
vestigate a less direct application of these measurements,
which is not sensitive to such fine-scale errors.

3.2. Using perceptual effective formants in for-
mant estimation

As is the case with all formant trackers known to us, our
formant tracker sometimes makes gross tracking errors.
Several of these errors appear when the energy of F2 is
high and the bandwidth is wide. This results in a wide
strip of high energy around true F2 position. This might
confuse the resonator equations and result in two formant
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Figure 2. F2 versus F1 and F2’ versus F1 of

18 Swedish vowels using automatically estimated
data.
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Figure 3. Example of fixing errors using F2’ as
input.



positions in this broad band while the true F3 is in a
much higher frequency band. With the knowledge that
F3 should be above F2’ in most cases, we implemented an
algorithm to check whether a mistake has been made on
this we re-estimate the F2 and F3 between (F1'+ F2')/2
and 4000HZ.? This method solved the problem in most of
the cases.

One examples i1s shown in Figure 3. In the figure,
the first window shows the original formant estimation
result with the formant location (shown in white) on
the background of the spectrogram; the second window
shows the perceptual effective formant estimations on the
background of the PLP spectrogram; the third window
shows the improved formant estimation as a result of us-
ing F'2’ as information to correct the errors in the first win-
dow where F3 < F2’; the last window shows the TIMIT
phoneme labels.

The following tests were performed to evaluate the ef-
fect of this post-processing on formant estimation:

1. Manual measurement of errors, in 50 files randomly
extracted from the TIMIT training set, which were
spoken by 50 different speakers (35 male and 15 fe-
male). Formant estimation before and after post-
processing were checked by hand. From a total of
772 sonorant segments, the error rate was decreased
from 10.2% to 5.7% by post processing (correspond-
ing to a 44.3% reduction in tracking errors) .

2. Vowel classification experiments were performed us-
ing formant estimation before this post-processing
and after. The results are shown in Table 4:

formant estimation | original | improved
dimension 17 17
% correct 69.8% 70.4%

Table 4. Classification results using different for-
mant estimation methods.

These results show that although the post processing
helped reduced some errors in formant estimation, the
correction of these errors are not significantly reflected in
the classification result.

4. SUMMARY AND FUTURE WORK

We presented an automatic procedure to estimate percep-
tual second formants. Preliminary experiments show that
this estimation method can give relatively good estimates
compared to the perceptually measured data. Experi-
ments also show that although perceptual effective for-
mants estimated by this method were not as accurate as
conventional formants when used as explicit classification
features, they can be used in the formant estimation pro-
cedure to help reduce the errors.

We intend to extend this work in a number of directions.
First, we would like to understand both why these analysis
methods seems to work generally well but produce large
error in a few specific cases. We suspect that this can be

3This method will not hurt the rare cases that F3 <= F2’.
In thoses cases, the re-estimated F2 and F3 are the same as
the original estimation.

traced back to the interaction between the sizes and loca-
tions of spectral prominences, and will therefore analyze
the wide-band spectra in some more detail. Second, we
would like to know whether these analysis methods can
be adjusted to improve their accuracy in locating F2’,
therefore improving the separability using F2’ directly as
a classification feature. In addition, we can also use infor-
mation of F1” and F2’ to correct errors in the estimation
of F1 and F2. This would help improve the classification
more than correcting F3. In addition, we suspect that
a better modeling of the vowels can make better use of
perceptual effective formants’ information.
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