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ABSTRACT

The identification of phoneme boundaries in
continuous speech is an important problem in areas
of speech recognition and synthesis. The use of
robust parameters to allow a trained data set
obtained from one language to be used for boundary
identification in another language is being
investigated. In particular the use of mixed time-
frequency rate parameters, and the training on the
change of the rate parameters at acoustic boundaries
is reported.

INTRODUCTION

The identification of phoneme boundaries in
continuous speech is an important problem in areas
of speech recognition and speech synthesis. In
particular, speech synthesis requires accurate
knowledge of phoneme transitions, in order to
obtain a naturally sounding speech waveform from
stored parameters. Recently [1] , [2] there has been
detailed analysis reported in the literature on
automatic alignment and segmentation of speech
data. In [1] the features used are the cepstral
parameters, while in [2] the features are auditory
filter bank parameters and energy. The methods
involve the use of HMM’s or neural networks to
identify phonemes or phoneme classes. In this paper
the use of acoustic features instead of parametric
features, for automatic segmentation is investigated.
Al-Hashemy, [3], uses non parametric features for
the discrimination of speech data. His results
showed that a mixture of time and frequency
features in one vector give better results than
considering each feature separately. Recently, [4],
[5], the use of mixed parameter sets has been
reported for phoneme boundary identification.
Different parameters provide differing indications of
boundaries for different phoneme transition classes.
The use of mixed parameters appears to give very
robust boundary identification and, in particular,
works well on untried speech data after being
optimised with a known, labelled speech training
base [6]. The work reported here, centres on the

development of a speech synthesis system for the
Maltese language. While the methods employed will
be applicable to any language, the testing of
automatic phoneme boundary detection requires an
expansive, annotated speech data base which, as yet,
does not exist in the Maltese language.Thus the
method has been developed using the TIMIT
database but with the expectation that, with the use
of mixed parameters, the method is robust enough
to be applied to another language, in this case
Maltese, in which the phoneme boundaries are
unknown.

MIXED PARAMETER MODEL

Here, a combination of both time and frequency
domain parameters were used. The zero-crossing
count, log energy and the first (unit sample delay)
auto correlation coefficient were employed as time
parameters. For the frequency domain
representation, a spectral envelope was obtained on
a frame-by-frame basis and the average energy
output of a set of mel-scale filters gave a measure
of the distribution of spectral energy. Each
parameter was normalised over the utterances under
analysis and then the rate of change of each
parameter was calculated. At each boundary it is
assumed that a given parameter can increase,
decrease or remain the same, while between
boundaries the parameters are approximately
constant. The rate of change of each parameter
therefore exhibits changes at a boundary. These
changes are usually very robust and independent of
the speaker and speaker variation. By using mixed
features that are not LPC based, the rate of change
at the boundary of the rate parameters has acoustic
interpretation. Seven broad classes were used. These
are silence, vowel, stop closure, stop burst, voiced
fricatives, unvoiced fricatives and sonorants. In this
way all classes of phoneme transition were
adequately represented. Using the labelled training
data, obtained from the TIMIT database, the
phonemic symbols were transformed into the broad
category sets. For each possible combination of
categories the appropriate boundaries according to



burst - sonorant vowel - voiced fricative

z c P L M H z c P L M H
DK -0.10 008 0.16 ©0.07 0.06 -0.03 DK 0.37 -0.50 -0.42 -0.65 -0.75 0.67
KL -0.16 ©0.17 ©0.32 0.29 0.26 0.01 kxL 0.5 -0.40 -0.19 -0.16 -0.17 0.54
ARC  -014 011 030 041 021 001 ARC  0.44 -0.66 -0.50 -0.09 -0.04 0.94
GAR  -0.23 018 034 068 052 003 GAR  0.61 -0.42 -0.22 -0.20 -0.13 1.62
FILE -0.1d4 015 041 01 036 o000 FILE 0.38 -0.44 -0.23 -0.31 -0.21 0.77

fricative - vowel closure - burst

z c P L M H z c P L M H
DK -0.64 0.52 ©0.55 0.81 0.61 -0.17 DK 0.24 -0.16 0.21 0.10 0.13 0.48
KL -0.56 063 035 062 035 -026 KL 0.07 -0.22 0.17 0.02 0.12 0.20
ARC  -0.31 0.26 0.58 1.10 1.00 0.02 ARC  0.08 -0.26 0.25 0.13 0.15 0.41
GAR -0.95 0.31 0.47 0.72 0.63 0.00 GAR  0.01 -0.05 0.16 0.04 ©0.07 0.25
FILE -0.52 ©0.56 0.47 0.73 0.54 -0.23 FILE 0.12 -0.13 0.20 0.09 0.14 0.49

Table 1

Average change of rate parameters at (a) burst - sonorant boundary; (b) vowel - voiced fricative boundary; (c) fricative -
vowel boundary; (d) closure - burst boundary; The values are for individual speakers from the TIMIT training set, and
for the overall FILE average for the speakers used from the training set.

the data base, were located. The values of the rate
of change parameter sets were averaged for several
neighbouring frames of speech data spreading across
a boundary. For each boundary class, the
distribution of the rate of change parameters
depends on the class type. Table 1 gives values
obtained for rate of change at a boundary for
different speakers in the TIMIT training set, and the
overall averages across a large speaker base. Using
the maximum likelihood method [7], the parameter
sets, derived for each located boundary from the
training data, were used to build a covariance matrix
for a particular phoneme transition from data
representing that transition. Thus for each class of
phoneme ftransition, one optimum covariance
matrix was stored representing that class. Sentences
from the training set were used to build up the
matrices.

Therefore the system does not have phoneme
trained or phonemic class trained data. It has
transition trained data, and the covariance matrices
are essentially optimised transition matrices,
expressing the variability in the rate of change of
the chosen parameters across the class boundary in
the immediate area of the class boundary.

EXPERIMENTAL RESULTS

For the purposes of testing, another set of labelled
TIMIT data was used initially. Two types of tests
were conducted. The first was to check on the
reliability of the matrices to obtain a correct
transition frame. Parameters were derived from this
test data in the same manner as for the training data

for a series of 12 frames on either side of a
phoneme boundary, representing an overall 120 ms
of waveform. It is noted that, in this case the class
of transition is known a priori but what is required
is the position of that transition. Each frame of
parameters is matched to the appropriate covariance
matrix and a set of likelihood values are obtained.
The minimum log likelihood ¢, , is obtained using

opt »

Cope= Min[ (p-p,) 7Co" (p-py) 1 (1)

where p is the vector under test, C, is the
covariance matrix for the boundary class, and p, is
the mean vector for the class. The frame of test
parameters which give the minimum ¢, is taken as
the position of the boundary of the phoneme
transition. Results gave a very high incidence of
boundary identification within 20 ms of the TIMIT
labelling. Results for some classes are shown in
Table 2. The second test was to look at the
discrimination between the various classes. The test
was set up as a confusion matrix type in which a
given known transition type parameters were
submitted to all the matrices representing the
various class boundaries.

The automatic segmentation was then tested on
TIMIT test sentences, changing the TIMIT phonetic
labels to the phonetic classes. The purpose was to
see whether matching and identification of phoneme
boundary classes was possible. In this case the
errors could not have insertions or deletions or
substitutions, but only deviations of the boundaries.
For each boundary all the prospective positions,




Boundary Type Correct Total %
Vowel - Fricative 789 831 96 .1
Fricative - Sonorant 130 145 89.6
Silence - Vowel 96 110 87 .2
Silence - Voiced Fricative 231 277 83.4
Burst - Sonorant 493 600 82.1
Vowel - Voiced Fricative 459 571 80 .4
Closure - Burst 1554 2024 7.1
Vowel - Sonorant 1753 2440 .2
Burst - Voiced Fricative 4| 32 63 .6
Sonorant- Yowel 1527 2522 60 .5
Table 2

Boundaries within 20 ms of the annotated boundary type for various classes of boundaries.

obtained as minima from (1) were stored. A
dynamic programming algorithm was then used to
choose the optimal path by backtracking. Duration
information on each phoneme class was included as
a weighting in calculating the distance of every
possible minimum from the current boundary to
every possible minimum in the next boundary. This
is given by

N L
min Y Y D, () (2)
n=1 3=1
where N is the number of boundaries
L the number of feature frames
and

7
Dy (m) = d,(J) + minz dy, (1) + dy(F,1)
=0

where d,(j) is the value obtained from (1) for the
frame, d,,, (i) is the minimum value at frame i
from the previous boundary calculation; dy(j,i) is a
distance weighting between frames j and i that
depends on the expected phone type between frames
i and j . To reduce the computation, only the values
and position of the minima obtained from (1), at
every boundary calculation, are kept as potential
boundary points, the other frames being set to an
arbitrary high value.

The method described here was also used with
twelve lpc derived cepstral parameters rate of
change as a frame vector. The tests were (o see
the robustness of the training with respect to the test
sentences, and the performance with respect to the
cepstral rate parameters. Table 3 shows the results

obtained on a subset of the TIMIT test sentences.
The mixed parameter set has a slightly better
performance in boundary identification compared
to the cepstrally derived parameters. It is also quite
robust with very little difference between the result
obtained using training sentences and test sentences.

TIMIT Set Features n Correct
Training AP 63 .1
Cepstral 60 .2
Test AP 62 .9
Cepstral 57 .6
Table 3

Results obtained for Acoustic Rate Parameters and
Cepstral rate Parameters using TIMIT.

Finally, the method was applied to unlabelled
Maltese utterances to obtain the phoneme
boundaries and extract the diphones from the
embedded words. The results appear very
encouraging. Figure 1 shows a typical result of
using the trained matrices to automatically segment
the word sebveta’ to get the phoneme pair /bv/ .

CONCLUSIONS

It has been shown that the use of acoustic
parameters and, specifically the rates of change of
these parameters, provides a robust method for both
boundary identification and phoneme transition class
identification where the trained data set has been
obtained from a language different from that under



test. Such methods are also robust when tested on
speakers unknown to the training set.
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Figurel

Rate parameters from top are zerocrossing rate;
correlation rate; energy rate; low frequency,
midfrequency and high frequency rate. The features are
for dummyword ’ sebveta ’ .



