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ABSTRACT

In this paper we report the characteristics of slow,
average and fast speech. The study has been done using
the TRESVEL Spanish database. It is composed of
3200 sentences uttered at three different speech rates
and contains speech material from 20 male and 20
female speakers. This database has been designed to
study, evaluate and compensate the effect of speech rate
in Large Vocabulary Continuous Speech Recognition
(LVCSR) systems. We report a new measure for the
rate of speech (ROS). The ROS is normalised using an
appropriate set of constants that depends on the
expected duration of each phone. We also report the
characteristics of slow, average and fast speech. Finally,
we report the degradation in performance of a
continuous speech recognition system when the speech
rate is low and high, and the evaluation of two
compensation techniques. Adaptation of the language
weight, insertion penalties and HMM state-transition
probabilities for slow speech provides a 21.5%
reduction of the word error rate (WER).

1. INTRODUCTION

The speech rate within a dialogue varies both globally
and locally among speakers due to various factors like
emotion [2], emphasis, lexical stress, dialogue status,
etc. This variation dramatically affects the performance
of LVCSR systems, as double to triple word error rates
for fast and slow speakers.

We have found out that in real applications, if the
sentence is misrecognized, users are used to repeat the
sentence very slowly to make it more understandable.
Consequently, as all the components of the system are
adjusted to do speech recognition at the average speech
rate, the word accuracy dramatically degrades.
Therefore, some compensation mechanism has to be
used to make speech recognizers robust against
variations of the ROS.

Several studies have been done in other research groups
[31[4][5] to deal with this problem. All of them propose
different methods to measure the ROS as well as
approaches to adapt the speech recognizer to the ROS.
The databases used to do evaluations in these research
works were recorded at normal speech rate (density b of
figure 1) and the experiments for unusual rates were

carried out extracting from this data those speakers that
spoke faster or slower than the average. There is a study
for Japanese [6] where a database of normal, slow and
fast speech is used, but the database is small and the
study was only carried out for male speakers. We
strongly believe that it is necessary to have a database
containing enough examples of all the ROS in order to
determine the characteristics of the sounds at different
speech rates (densities a and c of figure 1) and get
reliable evaluations of the compensation techniques.
For this reason, the first goal of our study was the
design and collection of the TRESVEL database, which
is described in section 2.

Section 3 describes a new measure of the ROS that has
been developed to make the measure independent of the
set of phones that compose the sentence. Section 4
describes a summary of the study that was carried out to
determine the characteristics of slow, average and fast
speech that affect speech recognition accuracy. In
section 5 we present the results of the study about
phone duration at different speech rates. Section 6
presents the experimental results of the baseline system
evaluation and the performance of the compensation
techniques. Finally, in section 7 we present our
conclusions.

2. THE TRESVEL DATABASE

The TRESVEL Spanish database has been designed to
study, evaluate and compensate the effect of speech rate
on LVCSR systems. It is composed of slow, average
and fast speech. The speakers were asked to speak
normally, fast and slow, so that we could: (a)
characterise the acoustic properties of sounds like
duration, coarticulation effects,... for each speech rate,
and (b) determine other aspects like sound relaxation or
deletion and speech rate boundaries.

The database is composed of 1400 different sentences
containing telephone and driving license numbers,
amounts and spontaneous speech sentences. There are
40 speakers (20 male and 20 female) and each speaker
uttered 80 sentences at three different speech rates
(slow, average and fast), so that there is a total of 9600
sentences (3200 sentences for each speech rate).

Figure 1 shows the probability density function of the
speech rate for the three different cases. As it can be
seen, the ROS range of variation for each speech rate is



very large and the three density functions overlap, what
proves the lack of consensus among speakers on what
we subjectively call slow, average and fast speech rate.
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Figure 1: Probability density functions of the speech rate for:
a) low speech rate sentences

b) average speech rate sentences

c) high speech rate sentences

3. MEASURE OF THE RATE OF SPEECH

It has been pointed out that phone rate, excluding
silence periods, is a reliable measure for the ROS. In
this sense, several measures for the phone rate like
Inverse of Mean Duration (IMD) [4] or Mean of Rates
(MR) [3] have been reported.

Our experiments show that these measures perform well
in many cases, but they have a drawback: They can
provide different values of the ROS for two sentences
uttered at the same speaking rate. The reason for this is
that the expected duration of a phone is different from
one phone to another, so that the ROS depends on the
set of phones that compose the sentence. We have
defined a new ROS measure which is more independent
of this fact:
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where N is the total number of phones, d; is the
duration of the i™ phone of the utterance, Efd;] is the

expected duration for the i phone and d is the mean

duration of a phone. Both, Efd;] and d are obtained
using a large training spontancous speech database.

4. CHARACTERISTICS OF SLOW,
AVERAGE AND FAST SPEECH

The study of the characteristics of slow, average and
fast speech has been carried out by listening to the
TRESVEL database files and examining their
waveforms and spectrograms. In general, it can be
stated that slow speech is used to be properly
pronounced while average and fast speech are used to
have effects like phone elision or weakening, aspiration,
assimilation, assibilation, etc.

There are two ways speakers are use to talk when they
are asked to speak slowly: (a) increasing the duration of
the phones keeping cross-word articulation (no silences
between words), and (b) introducing long silences
between words and slightly increasing the phone
duration. We have checked out that in both cases
phones were carefully pronounced.

Phone elision is more common in fast than in average
speech though there are cases like the intervocalic /d/
which is used to be either elided or weakened at both
speech rates, mostly in the verbal desinence /-ado/. It
has been also observed that fast speech is basically a
sequence of transitions from one sound to the next
sound, so that the percentage of stable regions in the
spectrogram is low in comparison with the same
percentage at the average speech rate. We believe this
transient nature of the spectra is one of the reasons why
the acoustic models behave poorly for fast speech. This
effect can be observed in figure 2, where it is shown the
spectrogram for the [rriaa] sound group at low, average
and high speech rate.

Vowel and vowel sequences are also affected by the
speech rate; there are cases where a vowel is elided
([oa] > [a]: quiero afnadir... > quieranadir ), cases where
two vowels are transformed into a different one ( [ue] >
[o]: pues > pos ), and cases where are vowel is
assimilated ( [e] > [e~]: mensaje > mesaje ).

We have also observed that very often the affricate [tS]
becomes fricative in fast speech while it happens less
frequently in average speech and very rarely at low
speech rate.

Consonant groups are affected by the speech rate in
many different ways. For example, the /ns/ group is
used to become /s/ (mensaje > mesaje) and the /sT/
group is used to become /r'T/ (doscientos > dorcientos).
We have found out many other cases where phones are
affected by the speech rate, but we are not going to
report them as it would require a extensive description
which would not fit into this paper. Nevertheless, we
would like to point out that the important fact of these
effects is that some of them cannot be properly
modelled by triphones since a particular triphone can be
pronounced in different ways depending on its near
contexts and the speech rate.

Figure 2: spectrograms of sounds [rriaa] pronounced
at slow, average and fast speech rate.

5. PHONE DURATION

Automatic and accurate computation of the phone rate
and phone duration requires the correct transcription for
the utterance. To compute the phone duration, we first



used forced alignment to determine the phone
segmentation and then both phone duration and phone
rate are obtained from this segmentation.

The duration of phones is related to the lexical stress,
the contexts of the phone, the position of the phone
inside the word, its phonetic properties and the speech
rate of the sentence.

Figure 3 shows the duration of phone “a” in
milliseconds as a function of the speech rate. The
duration mean as well as the standard deviation
decrease as the ROS increases. Our experiments show
that this behaviour is common for all the phones.
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Figure 3: “A” Vowel duration for (a) slow.
(b) average. and (c) fust speech.

The phone duration study was done for the Spanish
basic phone set, which was later divided into six groups
since the average duration for phones belonging to the
same group was very similar. The groups that were
studied are: vowels, fricatives (fricativ.), voiced
plosives (v. plos.), unvoiced plosives (u. plos.), voiced
consonants (v. cons.) and affricates (affric.).

Table 1 shows the average duration of each group for
slow, average and fast speech rate as well as
percentages of duration reduction with respect to the
duration of slow speech.

It can be inferred from the analysis of table 1 that there
are three kinds of duration behaviour in terms of
percentage of duration reduction: (a) Vowels, which are
the most affected by the speech rate: 61.6% duration
reduction on average for fast speech rate and 47.5% for
average speech rate. (b) Fricatives, voiced plosives,
voiced consonants and affricates: their duration is
reduced about 32% at average speech rate and about
49% at fast speech rate. (c) Unvoiced plosives, which
are by far the least sensitive sounds to the speech rate.
We have checked out the results presented in Table 1
by manually segmenting a reduced set of sentences;
even though there are slight differences in the average
duration of the sounds (mostly for fast speech rate), the
percentages related to the duration reduction are
basically the same.

6. EXPERIMENTS AND RESULTS

The speech recognition experiments have been carried
out using the speech recognizer of the ATOS
conversational system [1], which vocabulary size is
about 4700 words.

TABLE 1: Average duration for slow, average, and fast
speech (ms) and percentage of duration reduction

SLOW AVERAGE FAST
vowels | 135 71 475 % |51 61.6 %
fricativ. | 138 93 326 % |69 49.9 %
v. plos. |90 64 29.3% |48 46.8 %
u. plos. [112 93 18.1% |72 36.0 %
v.cons. | 123 32 33.8% |61 50.3 %
affric. 179 116 35.0% | 89 50.5 %

The first experiment evaluated the performance of the
baseline system for the three speech rates. The analysis
of results showed that 62% of errors for fast speech are
due to substitutions, 31% to deletions and 7% to
insertions. These results indicate that the model
parameters and the HMM topology are not appropriate
for fast speech since the percentages of deletions and
substitutions are very high. Concerning the case of slow
speech, 42% of errors are due to substitutions, while
55.8% are due to insertions and 2.2% to deletions.
These results show that even though the parameters of
the models are not the most appropriate for slow speech
rate, the large amount of insertions together with the
lack of balance between insertions and deletions are
more important problems.

Two compensation techniques and their combination
were tested to reduce the effect of the above mentioned
problems:

(a) The first compensation technique, Language Model
Penalty and Weights Adaptation (LMPWA), tries to
deal with the lack of balance between insertions and
deletions for both slow and fast speech: the language
weight for each search pass together with the word
insertion penalty help to control the percentage of
insertions and deletions, so that some experiments were
carried out to optimise these parameters for each speech
rate. The results show a 15.4% reduction of the word
error rate (WER) for slow speech and just a 1.4%
reduction for fast speech.

(b) The second compensation technique, Transition
Probabilities Adaptation (TPA), modifies the HMM
state-transition probabilities to adapt them to fast and
slow speech. This idea has been previously tried by
other authors [3][4] and our experiments confirm its
usefulness. Based on this idea, we have developed two
different approaches to do TPA getting an additional
13.6% improvement for slow speech and 5.9% for fast
speech in terms of WER reduction.

In the first approach, we adapted the HMM state-
transition probabilities to fast/slow speech by
reducing/increasing the probability of remaining at the
same state (a;) using the following equations for slow
and fast speech rate respectively:

s _ a s a
a,=a;+ X (1_aii)’
f_af a
a; = A a;
where A’ and A are constants determined

empirically, a;, al and as are the probabilities of
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remaining in state “i
rates respectively.
The other state-transition probabilities, i.e. @;;,; and
a;;2 were adjusted proportionally to their relative
importance.

Although this method improved the performance of the
baseline system, a more accurate HMM state-transition
probabilities adaptation approach was tried. In this
second approach, the transition probabilities of each
phone are adapted separately. This is carried out by
taking into account the phone duration study of section
5. The equations used to get the new state-transition
probabilities for slow and fast speech are:

for slow, fast and average speech

S,p __ a,p s a,p
a;” =da; +>\‘p “(I=ay?)
fop —af 0P
a; " = A i
where the index “p” is the phone identification.
The constants ksp and )pr are different for each phone

and are proportional to their duration reduction at each
speech rate.

As before, the other state-transition probabilities, i.e.
aiiv; and @, were adjusted proportionally to their
relative importance.

This approach for TPA performs better than the
previous approach for slow speech rate. Nevertheless, it
did not work so well for fast speech rate. We believe
there are two main reasons for this method to behave
poorly at fast speech rates: (1) some triphone models
cannot be properly time-aligned with the speech signal
since the duration of some phones is lower than the
minimum one allowed by the current HMM topology,
and (2) the difficulty to accurately predict phonetic
phenomena like phone elision, that reduce the duration
of the utterance. For these reasons the first TPA
approach was used for fast speech rate while the second
one for slow speech rate.

(c) Finally, our experiments show that the combination
of both compensation techniques, LMPW&TPA,
outperforms the results obtained using each method
separately: the WER was reduced a 21.5% for slow
speech rate and a 7.8% for fast speech rate.

Figure 4, represents the WER reduction for the
reported experiments.
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Figure 4: Percentage of the WER reduction

7. CONCLUSIONS

In this paper we have presented the results of the study
about the characteristics of slow, average and fast
speech, their effects in large vocabulary continuous
speech recognition and two compensation techniques.
We have shown that two simple methods can reduce the
WER a 21.5% at slow speech rate and a 7.8% at fast
speech rate.

There are two main conclusions in this work:

(a) The main reasons why WER dramatically increases
at fast speech rates are: the transient nature of the fast
speech spectra, the difficulty to accurately predict
phonetic phenomena like phone elision as well as the
time-alignment mistakes made by the speech recognizer
when the duration of sounds is smaller than the
minimum duration allowed by the triphone models.

(b) Some of the phenomena observed for both slow and
fast speech cannot be properly modelled by triphones
since a particular triphone can be pronounced in
different ways depending on its near contexts and the
speech rate.
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